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Summary
The human cognitive biases that result in anthropomorphism, the moral confusion surrounding

the status of robots, and wider societal concerns related to the deployment of artificial intelli-

gence at scale all motivate the study of robot transparency — the design of robots such that

they may be fully understood by humans. Based on the hypothesis that robot transparency leads

to better (in the sense of more accurate) mental models of robots, I investigate how humans

perceive and understand a robot when they encounter it, both in online video and direct physical

encounter. I also use Amazon Mechanical Turk as a platform to facilitate online experiments

with larger population samples. To improve transparency I use a visual real-time transparency

tool providing a graphical representation of the internal processing and state of a robot. I also

describe and deploy a vocalisation algorithm for transparency. Finally, I modify the form of

the robot with a simple bee-like cover, to investigate the effect of appearance on transparency.

I find that the addition of a visual or vocalised representation of the internal processing and

state of a robot significantly improves the ability of a naive observer to form an accurate model

of a robot’s capabilities, intentions and purpose. This is a significant result across a diverse,

international population sample and provides a robust result about humans in general, rather

than one geographic, ethnic or socio-economic group in particular. However, all the experiments

were unable to achieve a Mental Model Accuracy (MMA) of more than 59%, indicating that

despite improved transparency of the internal state and processing, naive observers’ models

remain inaccurate, and there is scope for further work. A vocalising, or ‘talking’, robot greatly

increases the confidence of naive observers to report that they understand a robot’s behaviour

when observed on video. Perhaps we might be more easily deceived by talking robots than

silent ones. A zoomorphic robot is perceived as more intelligent and more likeable than a very

similar mechanomorphic robot, even when the robots exhibit almost identical behaviour. A

zoomorphic form may attract closer visual attention, and whilst this results in an improved

MMA, it also diverts attention away from transparency measures, reducing their efficacy to

further increase MMA. The trivial embellishment of a robot to alter its form has significant

effects on our understanding and attitude towards it. Based on the concerns that motivate this

work, together with the results of the robot transparency experiments, I argue that we have a

moral responsibility to make robots transparent, so as to reveal their true machine nature. I

recommend the inclusion of transparency as a fundamental design consideration for intelligent

systems, particularly for autonomous robots. This research also includes the design and develop-

ment of the ‘Instinct’ reactive planner, developed as a controller for a mobile robot of my own

design. Instinct provides facilities to generate a real-time ‘transparency feed’— a real-time trace

of internal processing and state. Instinct also controls agents within a simulation environment,

the ‘Instinct Robot World’. Finally, I show how two instances of Instinct can be used to achieve

a second order control architecture.
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Chapter 1

Introduction

“If ... the past may be no Rule for the future, all Experience becomes useless and can give
rise to no Inferences or Conclusions.”

— David Hume, An Enquiry Concerning Human Understanding

“There is no future in sacred myth. Why not? Because of our curiosity. .... Whatever we
hold precious, we cannot protect it from our curiosity, because being who we are, one of the
things we deem precious is the truth. Our love of truth is surely a central element in the
meaning we find in our lives. In any case, the idea that we might preserve meaning by
kidding ourselves is a more pessimistic, more nihilistic idea than I for one can stomach. If
that were the best that could be done, I would conclude that nothing mattered after all.”

— Daniel Dennett, Darwin’s Dangerous Idea

1.1 Motivation

Robots have existed in popular culture for many years, but we are now able to build machines

that begin to approach the capabilities foreshadowed by scientific futurology and science fiction

alike. In this section I consider human biases that favour anthropomorphism of robots and

mis-attribution of robot capabilities, intentions and goals. I briefly look at the influence of

literature and media on our understanding of robots, particularly in Western culture, and discuss

how anthropomorphism and wider cultural influences lead us to moral confusion about the

status of robots in particular, and artificial intelligence more generally. I review some serious

concerns that have recently been raised concerning the deployment of AI and robots into human

society, and the potential for disruption of family life, the psychologically targeted disruption

of civic and political discourse, and even the alteration of our perceptions of gender. The real
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robots are here, and I describe some of the advances that facilitate the development of modern

autonomous robots.

In response to the revolution in AI and robotics, there is currently a fragmented approach to

public policy, and wide variation in the recommendations made by various governmental and

and NGO reports, particularly the discrepancy between those originating in the USA, and those

from the UK and European Union. We do not yet understand the impact of AI and robotics,

both at an individual level and collectively for human society.

In the light of these concerns, I introduce the idea of robot transparency and review the

arguments for its incorporation as a fundamental design criteria for robots. When a human

encounters, and possibly subsequently interacts with, a fully transparent robot, the human is

able to fully understand the robot. This understanding relates to the behaviours, intentions

and goals of the robot, together with the robot’s capabilities and ultimate purpose. A fully

transparent robot enables humans encountering the robot to gain a complete understanding of

its capabilities, purpose and behaviour. Our research is based on the hypothesis that we can

design robotic systems with increased transparency, and that this leads to better (in the sense

of more accurate) human mental models of robots. However, the assertion that transparency is

desirable and indeed helpful in scenarios where humans encounter robots requires empirical

examination if it is to have weight in the formulation of recommendations, principles, standards

and ultimately regulations for the manufacture and operation of autonomous robotic systems.

Using a non-humanoid mobile robot, I describe several experiments that investigate how humans

perceive and understand a robot when they encounter it. These experiments use both online video

and direct physical encounter. To improve transparency I use a visual real-time transparency

tool providing a graphical representation of the internal state and processing of the robot. I also

describe and deploy a vocalisation algorithm for transparency. Finally, I modify the form of the

robot with a simple bee-like cover, to investigate the effect of appearance on transparency.

In all these experiments I find that the addition of a visual or vocalised representation of the

internal processing and state of a robot significantly improves transparency — the ability of a

naive observer to form an accurate model of a robot’s capabilities, intentions and purpose. This

is a significant result across a diverse, international population sample and provides a robust

result about humans in general, rather than one geographic, ethnic or socio-economic group

in particular. We are not evolved biologically or culturally to deal with artificial autonomous

agency, and we cannot rely on the biases and mind models of our evolutionary past to help us

understand robots.
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1.2 Motivating Concerns

A wide range of concerns motivate this work, ranging from the exploitation of human cognitive

bias and anthropomorphism by robot manufacturers, to manipulation of voter behaviour by

autonomous systems designed to appear as humans interacting within social networks. I review

the basis of these concerns in the following subsections.

1.2.1 Human Cognitive Bias

Cognitive bias helps all animals make decisions based on uncertain and incomplete information

(Smith and Harper, 1995; Rendall, Owren and Ryan, 2009). Dennett (1989) notes that we

are biased to perceive self-propelled movement and intentional behaviour, indicating a bias to

perceive and recognise other biological agents. The evolution of bias towards assuming both

agency and hostility is clearly selective for individual longevity in an environment where one is

frequently the prey, not the predator. Our human biases are embedded within the very language

we use to communicate and think about the world (Caliskan-islam, Bryson and Narayanan,

2017). Human bias helps prune the search space of possible interpretations and responses,

enabling timely action selection within the real-time bounds of our ever unfolding environment.

From an evolutionary perspective, bias is biologically and social adaptive, and is an inescapable

precondition for human culture. Bias can be useful.

However, bias can also be harmful. Our biases can result in self-deception (Rauwolf, Mitchell

and Bryson, 2015), and inadvertent or deliberate deception by others. Bias increases the

possibility of mis-attribution and misunderstanding. Bias may result in a poor choice of mind

model. Horror movies feed on our mis-attribution of typical human characteristics to fictional

characters who are then revealed to be psychopathic killers. Bias can also result in unexpected

outcomes for human cognition and resultant behaviour. We are biased to assume that spoken

words originate from human authors (Schroeder and Epley, 2016), and our innate biases result

in ‘cognitive illusions’ that can lead to serious systematic errors of judgement (Kahneman and

Tversky, 1996).

Humans employ Mind Models to understand the world (Johnson-Laird, 1983). These models

may be seen as useful structures of biases, allowing us to make sense of the world around us

in terms of well known frames of appearance, behaviour, intention and capability. Once we

invoke a model, sensory input is most easily understood within the frame of the model, and our

repertoire of familiar responses can similarly be activated. For example, when we encounter

a dog we identify it as such based on size, physical appearance and so on. Having identified
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it we employ our model of a dog to interpret its behaviour. We interpret a wagging tail as

evidence that the dog is excited and pleased to encounter us. We understand that as the dog

moves towards us it intends to ‘greet’ us, sniffing in order to recognise or memorize our scent

for future encounters. Were the dog to growl, stand still and bare its teeth, we would recognise

the ‘warning’, understand that we are at risk of being bitten and rapidly select retreat as our

course of action. Our mind model is useful, and our attribution of human emotion, intention and

intentionality informs both our action selection and our conscious narrative (Malle and Knobe,

1997). Even in this brief description, we immediately see how our mind models and language

drive us to anthropomorphise, that is to attribute human traits such as emotion and intention to

non-human entities. We easily attribute human mind models to non-human agents, and even

to entities without agency such as a motor vehicle, storm, or volcanic eruption (Caporeal and

Heyes, 1997).

However, using pre-existing mind models can also be problematic, leading to poor outcomes.

Perhaps that dog we encountered is a breed we are unfamiliar with, and we do not know that it

has been especially bred to be spontaneously vicious without warning. A poor choice of mind

model occurs when we anthropomorphise robots. Robots are artefacts, the result of human

design, based on a set of human design criteria and objectives. Each robot design will employ

different technologies and approaches to achieve differing sensory, cognitive and physical

capabilities. The choice of an anthropomorphic model is therefore poor in the sense that it is

necessarily deficient of knowledge about these specific capabilities. Further, an anthropomorphic

model may predispose us to treat the robot as if it were human, affording it moral patiency,

and considering its actions in the light of our universal understanding of human moral agency

(Hauser, 2006).

If we have any mind models of robots, they cannot have arisen as a result of our evolutionary

history. Any frames we may have for thinking specifically about robots must be culturally

acquired.

1.2.2 Robots in Western Culture

The history of the robot stretches back far further than the beginnings of AI at the Dartmouth

College Summer Research Project of 1956 (McCarthy et al., 2006). Western culture includes age

old ideas of humanoid malevolent agency. Both Zarkadakis (2015) and Hancock, Billings and

Schaefer (2011) illustrate our Western fears of human artefacts becoming animated. Throughout

history we have created such stories, from the Greek Pygmalion myth, and the Golem of Jewish

folklore. Science fiction portrays primarily negative outcomes, from Shelley’s Frankenstein to

recent Hollywood films such as iRobot, Ex Machina, Her and Trancendence. This repeated
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narrative of our creations turning on us with the intention to either enslave, subjugate or destroy

humanity fuels our mistrust of AI and autonomous robotics. For a longer review of Zarkadakis’

book on this topic, see Wortham (2016). Such influences have been found not only amongst

the young, but also senior citizens, most likely to benefit from robotic technologies in care

applications (Walden et al., 2015). Conversely, in Eastern cultures, particularly in Japan, robot

technology is considered largely ‘tamed’. The difference between the natural and the artificial

is not so crucial and these long established Western fears are of less concern (Kaplan, 2004).

More recently some academics also warn us of the possibility of deliberate or accidental an-

nihilation of humankind by ‘runaway’ artificial intelligence (Prescott, 2013; Bostrom, 2014;

Bohannon, 2015) and wealthy concerned individuals are funding the Machine Intelligence

Research Institute1 to conduct ‘foundational mathematical research’ to address these hypothe-

sised risks (Soares, 2015). In response, it seems that journalists accompany all news relating

to robots and artificial intelligence with some version of the Hollywood Terminator imagery.

Meanwhile those with commercial or research funding interests remain positive about the

successful deployment of AI and autonomous robotic systems (Horvitz, 2017; Donnelly, 2017)

whilst engaging with ideas of ethical responsibility and self regulation, see Section 1.2.6. The

general public remain significantly confused about the ontological classification and practical

capabilities of robots (Perez Vallejos, Wortham and Miakinkov, 2017).

1.2.3 Moral Confusion

There are serious concerns that our anthropomorphism and misunderstanding of the nature of

robots extends so far as to attribute them either moral patiency, moral agency, or both (Bryson

and Kime, 2011; Bryson, 2018; Gunkel, 2017b). A moral patient is something to which, or

someone to whom, we owe a moral consideration. Humans, animals and the environment are

all typically considered as moral patients, whereas a bicycle or building is not. Moral agents

are those that are to be held to account for their decisions, they are responsible. At present

moral agency is only typically attributed to humans, corporations and certain institutions such

as governments. Young children are considered to have limited moral agency, and those with

certain developmental disabilities or psychological conditions are considered to have limited or

no moral agency, in the sense that we do not hold them entirely accountable for their actions

(Santoni de Sio and Di Nucci, 2017).

Should robots be considered as moral patients? Our desire to create beings in our own image,

combined with the residual dualism inherent in folk understanding of mind and autonomous

1MIRI see https://intelligence.org
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agency, leads many to believe that at some point of sophistication, robots should indeed become

moral patients, artefacts to which we will owe a debt of care beyond their economic value, and

that robots should therefore have rights (Gunkel, 2017b). In the sense that robots should be

considered artefacts with no special moral patiency, Bryson rather provocatively — though the

author agrees — asserts that ‘robots should be slaves’ (Bryson, 2010), not that we wish to see

a return to slavery, but that we should not build robots that could be considered ‘people’ with

rights in any sense. It is important to remember that robots are designed artefacts. The abilities

and capabilities that we include in robots are ours to control by design, and we must not make

the mistake to build robots that cause us to become morally obliged to them. This may all seem

rather abstract, but we already see serious consideration given to ways in which robots might

participate in religious ceremonies such as baptism, or acquire religious belief in order that they

may be ‘saved’ and teach religious doctrine to fellow believers (McBride, 2017).

Recently there has been much speculation, and some empirical investigation of the ability of

robots to become moral agents, able to make moral judgements and ensure morally acceptable

outcomes (Carsten Stahl, 2004; Coeckelbergh, 2010; Winfield, Blum and Liu, 2014; Charisi

et al., 2017). When a moral decision is taken by a person, they know that they will be held

accountable. A morally acceptable decision is effectively defined as one which will win general

approval from those in our local culture (Jones, 1991). Given sufficient time, we can rehearse the

decision and perhaps its likely consequences. Using our mental models of others, we measure

this approval or disapproval by the anticipated feedback of praise or punishment. We especially

fear social or legally enforced punishment, and this informs our moral behaviour. A robot,

designed with allocentric goals, has no fear of punishment, and certainly there is really no

current possibility of punishing a robot. Our current models of morality and responsibility

require punishment to operate effectively. This is a very simplified description of a complex

cognitive mechanism, not easily reduced to simple rules or logical models. Hauser (2006)

argues persuasively that humans have a fast acting internal moral mechanism, preconfigured

with universal human norms, and tunable by our local culture. This mechanism allows us to

be able to determine certain moral responses in local problem scenarios with little cognitive

effort — specifically the well known ‘trolley problems’. However, this class of problems and

the manner in which they are presented and investigated has more recently been criticised

as being unrepresentative of real moral decision making (Bauman et al., 2014). In modern

society, how a reasonable person should reasonably be expected to behave is, in the general

case, a very complex matter, as evidenced by the vast corpora of legislation, court cases and

judicial judgements that together comprise the Law. To consider robots for admission to the

class of moral agents has not only deep practical and philosophical problems, but is also legally

problematic. Individuals already seek protection from the law by shielding themselves behind a

corporate legal identity. Were that corporation then to produce robots considered to be moral
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agents, or ‘legal persons’, as has been suggested (Committee on Legal Affairs, 2016), this would

further shield the humans behind the robots from moral responsibility and legal accountability

(Bryson, Diamantis and Grant, 2017).

Delegation of moral accountability to robots presents an opportunity for humans and cor-

porations to eshew their responsibilities, whilst granting moral patiency to robots is risky,

unnecessary and wasteful of human resource. These moral confusions need to be addressed in a

practical manner by robot designers — see Chapter 6 for a longer discussion. As I outline in

Section 1.3, an effective way to achieve this is to make the machine nature of a robot apparent

to those who encounter, interact or regularly use a robot.

1.2.4 Societal Concerns

Humanity is vulnerable to mis-attributing anthropomorphic trust and agency to AI and par-

ticularly to robots. It is therefore important to consider the potential societal risks of such

mis-attribution. Human genetic and cultural evolution produces phenotypes within a predictable

normative space i.e. a relatively small manifold of variation in behaviour within the vast space

of combinatorial possibilities (Bryson, 2015). With sufficient personal data, AI is able to learn

these regularities and thus predict future behaviour. Once we can predict, we can better influ-

ence behaviour, maximising the utility of algorithms based on desired behaviour modification,

defined in goal functions. AI thus is a tool to refine and enhance our existing human abilities of

manipulation (Wortham and Bryson, 2018).

Sociologists warn of a considerable danger from unanticipated negative consequences in a

world in which pervasive sensing constantly captures data about us. Such data may result from

widespread deployment of Internet of Things (IoT) technology, but equally from ubiquitous

Internet connected autonomous robots (Goulden et al., 2017). It is perhaps the unknown nature

of these risks that is most concerning, and again this may account for the wide range of policy

reactions to AI and robots. In their report released in October 2017, the AI Now Institute2 at

New York University recommend that “Core public agencies, such as those responsible for

criminal justice, healthcare, welfare, and education (e.g “high stakes” domains) should no

longer use “black box” AI and algorithmic systems” essentially because of the unknown side

effects that deployment of these technologies may have for individuals and for society.

In an increasingly online world, social networks have become important sources of news and

forums for debate. Twitter is a public micro-blogging system that allows users to share short

messages. It provides an open application programming interface (API) allowing software

2AI Now Institute see https://ainowinstitute.org/
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developers to develop algorithms, known as Twitter Bots or simply ‘bots’ that are able to read

previous Twitter posts and re-post or reply to them autonomously, in addition to posting new

content. Kollanyi and Howard (2016) and Bastos and Mercea (2017) specifically report on ways

in which automated networks of these Twitter bots potentially influenced the outcomes of both

the 2016 US Presidential Election and the 2016 UK Brexit Referendum. More widely, it is

becoming clear that digital technologies that facilitate the application of psychological targeting

make it possible to influence the behaviour of large groups of people by tailoring persuasive

appeals to the psychological needs of the target audiences (Tufekci, 2015; Matz et al., 2017).

An embodied AI system, such as a robot, has the potential and opportunity to assess, target and

powerfully influence those who encounter it.

Others such as Calo (2017) have specific concerns about domestic intelligent assistants such as

the Amazon Echo (Alexa), Apple’s Siri, and Microsoft’s Cortana, in addition to countless chat

bots on a variety of social media platforms. Calo advises that these social agents present special

challenges for policy:

“At a more granular level, the fact that instantiations of AI such as Alexa (Echo), Siri, and

Cortana, not to mention countless chat bots on a variety of social media platforms, take

the form of social agents presents special challenges for policy driven by our hardwired

responses to social technology as though it were human. These include the potential to

influence children and other vulnerable groups in commercial settings and the prospect of

disrupting civic or political discourse, or the further diminution of possibilities for solitude

through a constant sense of being in the presence of another.”

Richardson (2015) is concerned about the prospect of intimacy, particularly sexual intimacy,

between people and machines. Richardson argues that by making sex robots we extend the

current objectification of women that occurs in prostitution and “further reinforce relations

of power that do not recognise both parties as human subjects”. The creation of artificial

‘others’, with ‘whom’ we have real, rather than imagined intimate relations, begins to redefine

the purpose of physical relationships, and therefore impacts the cultural meaning we ascribe to

physical relations between humans.

Danaher (2017) raises important concerns that autonomous technologies may reduce human pro-

activity, making us increasingly passive consumers, in a society characterised by the automation

of work, some kind of universal basic income and various opiate forms of entertainment. As

humans come to increasingly depend on the decisions and ‘advice’ of autonomous machines,

we will gradually lose both our ability and willingness to act in the world as responsible moral

agents, and thereby be reduced to mere moral patients. Danaher further argues that since “[this]

ability and willingness is central to the value system in modern liberal democratic states, the
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crisis of moral patiency has a broad civilization-level significance: it threatens something that is

foundational to and presupposed in much contemporary moral and political discourse.”

There has as yet been little empirical research to substantiate these concerns. Such ideas are

common in the various dystopian futures presented by science fiction, but whether the human

species can be ‘tamed’ by its own technology is at present an open question. However, we see

other species tamed, domesticated and now reliant on the intelligence and resources of alien

autonomous agents (though admittedly not of their own making), so there is equally no reason

for complacency.

The theory of memetics provides a way for us to think about the communication of human ideas

within an evolutionary context (Dawkins, 1982). Ideas, or ‘memes’ use humans as replicators to

spread throughout the population, rather like a biological virus. Humans provide the mechanism

for variation and selective replication through imitation. Like biological virus’, memes have no

notion of the message they carry, nor its impact. They are just information. It is our vulnerability

to their structure and content that allows them to reproduce and thrive, using humans as no more

than replicating ‘hosts’. Blackmore (2000) introduces us to the idea of ‘temes’, a category of

memes that evolve through the capacity of human technologies to select, vary and reproduce

ideas without human intervention. Blackmore identifies this as a new, third mechanism for

replication, enabled by the two previous mechanisms — genes and memes. Perhaps we are

now seeing the beginnings of this phenomena, produced by the combination of huge online

data sources, social networks and autonomous bots. Domestic intelligent assistants may be

the next replication technology for temes. We have biologically evolved immune systems to

defend against unwanted biological virus’, and culturally evolved mechanisms such as gossip,

reputation and law to guard against unwanted memes. These mechanisms already face new

challenges as a result of technological augmentation of human culture, as evidenced by increased

risks from biological pandemics and the rise of extreme ideologies. The speed at which ideas

spread is no longer governed by physical proximity. Autonomous bots similarly remove rate

limitations for selection and mutation of temes. How temes impact human culture is as yet

entirely unknown.

1.2.5 Real Robots

Robots are now a practical reality, due to a combination of relatively recent innovations in

materials science, engineering and computer sciences. We have seen very significant recent

advances in materials such as extremely light and strong composites and high energy density

battery technology. Increasingly powerful ceramic magnets facilitate the design of high powered

small electric motors. Miniaturised low cost sensors use lasers for range-finding, and tiny video
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cameras designed originally for smart phones produce high definition video. The signals from

these sensors can now be processed in real-time by low cost high powered processors. Vision

algorithms developed by computer scientists allow us to create sophisticated structured models

of the world, allowing robots to navigate in practical, habitable environments (Durrant-Whyte

and Bailey, 2006; Barfeh et al., 2017). Robots can classify and track the objects they encounter,

even when those objects (or the robot) are moving at speed, and when objects are partially, or

temporarily fully, obscured from view.

Today, social robots are able to track human gaze, accurately convert human conversational

speech into text, and synthesise human speech with realistic intonation and emotional expression.

A robot can combine the signals from its sensors in order to evaluate the emotional state of a

human and adjust its behaviour to appear empathic (Novikova and Watts, 2015; Charisi et al.,

2017). Robots also benefit from wireless connection to the Internet, giving them access to

almost all recorded human culture. These capabilities were previously only found in science

fiction robots, accompanied by human-like cognitive capabilities.

Robot technology is now poised to facilitate a wide range of applications beyond industrial

manufacturing, and robots will increasingly be encountered by users and bystanders with no

prior training. Currently, these people will most likely have no familiarity with real (as opposed

to science fiction) robots in general, and certainly no familiarity with a specific robot that they

encounter for the first time.

Robotics in public, domestic and near-domestic environments will certainly have many positive

and helpful applications. Obvious uses, such as companion robots for the elderly, and therapeutic

robots for autistic people have already been extensively trialled (Prescott et al., 2012). There are

also clearly situations where a robot may be misused, such as for the illicit recording of video in

intimate care environments, or the coercion of the infirm to control behaviour.

Irrespective of the underlying intention of the robot designer or operator, we can easily foresee

the opportunities for accidental or purposeful deception. There exists the potential for negative

consequences ranging from misuse or disuse of an incomprehensible robot, to fraud, invasion of

privacy and physical harm.

1.2.6 Public Policy for AI and Autonomous Systems

Given the impending consequences of real robots, several groups have pushed initiatives to

formalise public policy for AI and Autonomous Systems. In 2016, the Institute of Electrical

and Electronics Engineers (IEEE) launched a “Global Initiative for Ethical Considerations in

Artificial Intelligence and Autonomous Systems”. Their initial publication recommends no
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new regulation of AI systems, but rather recommends we should rely on a combination of

existing regulations and voluntary adherence to international standards, such as those produced

by the IEEE itself (IEEE, 2016, 2017). During the Obama Administration, the US Government

conducted an evidence gathering process that led to the production of a report by the National

Science and Technology Council Committee (National Science and Technology Council, 2016).

This report recommends the use of existing regulation where possible, modifying it if necessary,

but with this caveat:

“... where regulatory responses to the addition of AI threaten to increase the cost of

compliance, or slow the development or adoption of beneficial innovations, policymakers

should consider how those responses could be adjusted to lower costs and barriers to

innovation without adversely impacting safety or market fairness.”

In 2014 Stanford University commenced a “long- term investigation of the field of Artificial

Intelligence (AI) and its influences on people, their communities, and society” (Stanford

University, 2016). In the Executive Summary of the report from the 2015 study panel, they

conclude that:

“Faced with the profound changes that AI technologies can produce, pressure for “more”

and “tougher” regulation is probably inevitable. Misunderstandings about what AI is

and is not could fuel opposition to technologies with the potential to benefit everyone.

Inappropriate regulatory activity would be a tragic mistake. Poorly informed regulation

that stifles innovation, or relocates it to other jurisdictions, would be counterproductive.”

These preliminary assertions of light touch regulation are of concern, despite their qualification,

because at present we have little systematic understanding of the wider psychological and

societal impact of widespread deployment of autonomous intelligent systems, especially robots.

AI has become an extremely powerful technology, and should be considered alongside similarly

powerful technologies such as nuclear fission, pharmaceuticals and bio-engineering, all of which

have specific regulation beyond the application areas in which they are deployed.

In stark contrast, in 2015, the UK Government sponsored a report by Innovate UK taking a very

different view of regulation (Innovate UK, 2015). This report rightly recognises that:

“Robotics and autonomous systems do not work in isolation. They will require testing,

regulation, standards, innovation, investment and skills together with technical progress

and strong collaborative partnerships in order to fully realise the opportunity.”

Further, they identify regulation as a key enabler for economic exploitation, saying “Regulation

and standards will be the key that opens the UK market”. In December 2017, the UK All Party

Parliamentary Group on Artificial Intelligence (APPG AI) published its interim findings, based
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on a year of evidence meetings (All-Party Parliamentary Group on Artificial Intelligence, 2017).

Its key recommendation is to appoint a Minister for AI in the Cabinet Office with a role based

on the economic, social and ethical implications of six policy areas: Data, Infrastructure, Skills,

Innovation and Entrepreneurship, Trade and Accountability. Within Accountability, APPG AI

identified a number of ‘Calls for Action’, including the establishment of organisational standards

to document decision-making processes and models during design and implementation phases

of AI, together with auditing mechanisms to to serve as “a watchdog to secure safe, ethical

and ground-breaking innovation”. They also call for incentives for corporate organisations

to establish ‘Ethics Boards’ to help improve the transparency of innovation, and to “make

organisations accountable for the decisions made by the algorithms that they use”. Whilst we

might argue that existing laws and regulations already hold organisations to account for their

actions, this report makes plain that members of Parliament believe that a strengthening of

legislation may be required in response to the new opportunities afforded by AI technologies.

In 2016, The European Parliament Committee on Legal Affairs produced draft recommendations

calling on the EU Commission to propose a common European definition of smart autonomous

robots (Committee on Legal Affairs, 2016). It also recommends that the Commission

“... considers that a guiding ethical framework for the design, production and use of robots

is needed to complement the legal recommendations of the report and the existing national

and Union acquis; proposes, in the annex to the resolution, a framework in the form of a

charter consisting of a code of conduct for robotics engineers, of a code for research ethics

committees when reviewing robotics protocols and of model licences for designers and

users.”

This ethical framework should be

“... based on the principles of beneficence, non-maleficence and autonomy, as well as on

the principles enshrined in the EU Charter of Fundamental Rights, such as human dignity

and human rights, equality, justice and equity, non-discrimination and non-stigmatisation,

autonomy and individual responsibility, informed consent, privacy and social responsibility,

and on existing ethical practices and codes.”

So, we see a wide variation in current public policy relating to AI and autonomous robotics. One

explanation for this variation is a lack of empirical evidence relating to the psychological and

societal impact of deployment of autonomous intelligent systems. There is an urgent need to

generate scientific theory and data on which well reasoned policy can be constructed. We need

to understand the impact of real robots in society, not hypothesise based on cultural stereotypes

or the potentially biased views of those with specific economic and commercial objectives.
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1.3 Robots and Transparency

In order to minimise the risks associated with autonomous robots, there have been recent

attempts to construct rules or principles for robot designers, owners and operators. In September

2010, experts drawn from the worlds of technology, industry, the arts, law and social sciences

met at the joint EPSRC and AHRC Robotics Retreat to discuss robotics, its applications in

the real world and the huge promise it offers to benefit society. The EPSRC’s Principles of

Robotics (EPoR) are the result of this meeting (Boden et al., 2011). They are not intended as

hard-and-fast laws, but rather ‘soft-law’ to guide professional practitioners and standards bodies.

The five principles are repeated here for ease of reference:

1. Robots are multi-use tools. Robots should not be designed solely or primarily to kill or

harm humans, except in the interests of national security.

2. Humans, not robots, are responsible agents. Robots should be designed and operated as

far as is practicable to comply with existing laws and fundamental rights and freedoms,

including privacy.

3. Robots are products. They should be designed using processes which assure their safety

and security.

4. Robots are manufactured artefacts. They should not be designed in a deceptive way to

exploit vulnerable users; instead their machine nature should be transparent.

5. The person with legal responsibility for a robot should be attributed.

In this dissertation our focus is on Principle Four, where robot transparency is identified as an

important and desirable characteristic of an autonomous robotic system. Transparency may be

defined as the extent to which the internal state and decision-making processes of a robot are

accessible to the user (Wortham and Theodorou, 2017).

More broadly we might think of transparency as a means to avoid deception, a mechanism to

report reliability and unexpected behaviour, and a way to expose decision making (Theodorou,

Wortham and Bryson, 2017). Our interest is in the potential of transparency to mitigate the risks

of unhelpful anthropomorphism, misunderstanding and moral confusion concerning autonomous

robots, particularly for vulnerable users. There has been considerable previous research to

investigate ways in which robots can understand humans (Lee and Makatchev, 2009). However

transparency is the converse. Here we are interested in how robots should be designed in order

that we can understand them. Given the likely future ubiquity of various types of robots in

society, we are particularly interested in scenarios where we encounter a robot with no prior
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training or particular skills in robotics i.e. we are naive with regard to robots in general, or a

specific robot in particular.

This broad idea of transparency has already become a popular policy point whenever societal

concerns relating to AI are discussed. Indeed, the UNI Global Union — a global trades union

with over 20 million members — ‘demand that AI systems must be transparent’ (UNI Global

Union, 2017). Their report identifies ten principles for ethical artificial intelligence, with

transparency at the top of the list, taking their lead from the EPoR. They identify several

areas where transparency should be considered, linking it to the establishment of trust and

understanding of a system, and also prioritising transparency as a pre-requite to ascertain

whether the other principles they define are observed.

Transparency is mentioned as an important system characteristic in many other recent AI

‘principles’ and ‘ethical guideline’ formulations. The most notable and widely referenced of

these are listed below for further reading. However, as has been recently noted, there is a

‘gold-rush’ to create these kinds of documents, and so this list should only be considered as

illustrative of the wide range of discussions and publications that make reference to transparency.

1. Association for Computing Machinery US Public Policy Council (USACM) — Statement

on Algorithmic Transparency and Accountability (ACM US Public Policy Council, 2017)

2. British Standards Institute — Robots and Robotic Devices: Guide to the Ethical Design

and Application of Robots and Robotic Systems (BSI, 2016)

3. Centre de Recherche en Éthique, Université de Montréal — Montréal Declaration on

Responsible AI (Centre de Recherche en Éthique, 2017)

4. Future of Life — AI Principles (Asilomar Conference, 2017)

5. Institute of Electrical and Electronics Engineers (IEEE) — Ethically Aligned Design -

Version 2 (IEEE, 2017)

Wachter, Mittelstadt and Floridi (2017) provide a brief tour through the requirements for

transparency, explainability and accountability. They identify three important areas that require

further research:

1. How can human-interpretable systems be designed without sacrificing performance?

2. How can transparency and accountability be achieved in inscrutable systems?

3. How can parallels between emerging systems be identified to set accountability require-

ments?
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Wachter, Mittelstadt and Floridi recognise that where AI systems use opaque machine learning

approaches, transparency must still be provided by some additional mechanism that assesses

inputs and outputs in order to generate some narrative explanatory output.

Despite some recent criticism by Ananny and Crawford (2016) it is widely agreed that trans-

parency reduces our reliance on bias, because a transparent system should provide more certain

and complete information from which we can construct better (in the sense of more accurate)

mental models. Additional information reduces our reliance on stereotypic models and anthro-

pomorphic bias. Our research is based on the hypothesis that robot transparency leads to better

mental models of robots. The assertion that transparency is desirable and indeed helpful in

scenarios where humans encounter robots requires empirical examination if it is to have weight

in the formulation of recommendations, principles, standards and ultimately regulations for the

manufacture and operation of autonomous robotic systems. Further, it is important to measure

the extent of the effect achieved by specific forms of transparency, as an aid to robot designers.

There has been some subsequent general criticism of the Principles of Robotics (Szollosy, 2017),

and specifically of Principle Four (Collins, 2017), however the commentary accompanying

Principle Four makes it clear that the authors carefully considered the counter arguments against

transparency, but nevertheless decided that the moral obligation for transparency is paramount:

“One of the great promises of robotics is that robot toys may give pleasure, comfort and

even a form of companionship to people who are not able to care for pets, whether due

to rules of their homes, physical capacity, time or money. However, once a user becomes

attached to such a toy, it would be possible for manufacturers to claim the robot has needs

or desires that could unfairly cost the owners or their families more money. The legal

version of this rule was designed to say that although it is permissible and even sometimes

desirable for a robot to sometimes give the impression of real intelligence, anyone who

owns or interacts with a robot should be able to find out what it really is and perhaps what

it was really manufactured to do. Robot intelligence is artificial, and we thought that the

best way to protect consumers was to remind them of that by guaranteeing a way for them

to “lift the curtain” (to use the metaphor from The Wizard of Oz).

This was the most difficult law to express clearly and we spent a great deal of time debating

the phrasing used. Achieving it in practice will need still more thought.”
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1.4 Thesis

This body of work seeks to investigate robot transparency, particularly within the context of

unplanned naive robot encounters. In this context, ‘robot transparency’ means the extent to

which a naive observer is able to form an accurate model of a robot’s capabilities, intentions

and purpose. This work intends to:

1. Establish an empirical basis for some of the ethical concerns outlined in the previous

sections.

2. Establish whether there is a moral requirement for us to build transparent robots.

3. Provide a basis for the future study of robot anthropomorphism.

4. Investigate the claim that transparency impacts the emotional response towards a robot,

and alters the perception of robot intelligence, making transparency inappropriate for

children’s toys and robot companions.

The remainder of this chapter outlines the structure of this dissertation, acknowledging the work

of others involved in the research effort, and also itemising the specific contributions claimed by

the author.

1.5 Dissertation Structure

In this section, I outline the content of each of the following chapters, and reference related

publications.

1.5.1 Chapter 2: A Transparent Robot Control Architecture

This chapter is based on two published papers ‘Instinct : A Biologically Inspired Reactive

Planner for Embedded Environments’ (Wortham, Gaudl and Bryson, 2016) and ‘A Role for

Action Selection in Consciousness: An Investigation of a Second-Order Darwinian Mind’

(Wortham and Bryson, 2016). In this chapter I document the design and engineering work

involved to build the R5 Robot used in subsequent transparency experiments described in

Chapters 2-5. This work includes the design of the R5 robot, together with the design of the

Instinct reactive planner. The Instinct Planner is a new biologically inspired reactive planner,

based on an established behaviour based robotics methodology BOD, and POSH — its reactive

planner component (Bryson, 2001; Wortham, Gaudl and Bryson, 2016). Instinct includes
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several significant enhancements that facilitate plan design and runtime debugging, including

a Transparency Feed that provides a configurable, detailed, real-time trace of plan execution.

The Instinct Planner is specifically designed for low power processors and has a tiny memory

footprint, making it suitable for deployment in low power micro-controller based robot designs.

In addition, I describe a new tool to author reactive plans graphically, the Instinct Visual Design

Language (iVDL).

In this chapter I also describe a simulation environment used to test the functionality and

performance of the Instinct Planner, and to investigate a more sophisticated reactive control

architecture. The Instinct Robot World simulates many robots moving within a grid based world.

Each robot is equipped with two Instinct planners, to create a Second-Order Darwinian Mind.

I describe an experiment to show that this mind is able to adapt its control of the robot based

on a higher order objective, demonstrating that learning is possible within a fully transparent

non-symbolic cognitive architecture.

1.5.2 Chapter 3: The Impact of Transparency using Real-time Displays

This chapter is based on the published paper ‘Improving Robot Transparency : Real-Time

Visualisation of Robot AI Substantially Improves Understanding in Naive Observers’ (Wortham,

Theodorou and Bryson, 2017). Deciphering the behaviour of intelligent others is a fundamental

characteristic of our own intelligence. As we interact with complex intelligent artefacts, humans

inevitably construct mental models to understand and predict their behaviour. If these models

are incorrect or inadequate, we run the risk of self deception or even harm. In this chapter I

investigate the use of a real-time transparency display with the R5 robot. I demonstrate that

providing even a simple, abstracted real-time visualisation of a robot’s AI can radically improve

the transparency of machine cognition. Findings from both an online experiment using a video

recording of a robot, and from direct observation of a robot show substantial improvements in

observers’ understanding of the robot’s behaviour.

1.5.3 Chapter 4: Transparency using Audio - The Muttering Robot

This chapter is based on the paper ‘The Muttering Robot: Improving Robot Transparency

Though Vocalisation of Reactive Plan Execution’ (Wortham and Rogers, 2017). In this chapter

I investigate vocalisation of behaviour selection as a possible alternative solution for situations

where a visual display of decision making is either impractical or impossible. I show that the

addition of vocalisation is associated with a significant improvement in understanding of a

directly observed robot, comparable with the results obtained using a real-time display. This
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chapter also includes the development of a model to quantify participant emotional response to

a robot, and the experiment also shows that vocalisation has no significant effect on participants’

emotional response, though it slightly increases positive feelings about the robot. I discuss

the relative merits of visual and vocalised transparency mechanisms, and suggest possible

applications.

1.5.4 Chapter 5: The Effects of Appearance on Transparency

In this chapter I use Amazon Mechanical Turk to conduct an online experiment with the R5

robot. This study further supports the previous findings of Chapters 3 and 4, and also investigates

how altering the appearance of a robot impacts observers’ mental models, both with and without

visual and vocalised transparency measures.

The R5 robot is embellished with a simple bee-like cover to create a more zoomorphic form,

which we present as ‘Buddy the Robot’. I create eight robot encounter videos, encompassing

all combinations of visual and vocal transparency, with both the mechanomorphic R5 robot

and the zoomorphic Buddy robot. This experiment confirms that naive participants indeed

form significantly better models of a robot when accompanied by either a visual, or a vocalised

representation of the internal state and processing of the robot. I show that the zoomorphic

form without additional transparency results in significantly more accurate models, and claim

this is due to the increased likeability of the zoomorphic form, leading to increased participant

attention and therefore improved perception of the machine agency. However, in the presence

of additional transparency measures, morphology has a much reduced effect on mental model

accuracy. I also observe that a ‘talking’ robot greatly increases the confidence of naive observers

to report that they understand a robot’s behaviour seen on video, irrespective of their actual

mental model accuracy. The trivial embellishment of a robot to alter its form has significant

effects on our understanding and attitude towards it.

In all the studies of Chapters 3, 4 and 5 I find an upper bound to the improvement in mental

model accuracy that can be achieved through our particular real-time transparency techniques.

I assert that the remaining gap may be closed through other transparency means, for example

written or diagrammatic documentation.

1.5.5 Chapter 6: Synthesis

In this chapter I commence with a clarification of terms, such as artificial intelligence, and then

define robot ethics, with a subsequent discussion of its purpose and contemporary relevance to
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society. I argue that contrary to popular received wisdom, science has a great deal to contribute

to moral argument, and that scientists are indeed equipped to make certain moral assertions. I go

on to argue that we have a moral responsibility to make robots transparent, so as to reveal their

true machine nature, and I recommend the inclusion of transparency as a fundamental design

consideration for intelligent systems, particularly for autonomous robots. Finally, I conclude

this chapter with suggestions for further work.

1.5.6 Chapter 7: Conclusions

This chapter reiterates the purpose of the research programme and summarises the main conclu-

sions drawn from Chapters 2-6.

1.6 Contributions

Firstly, I would of course like to acknowledge my supervisor, Dr Joanna Bryson, for her many

helpful suggestions and guidance throughout this research programme, and for her original deep

insights into action selection, culminating in the POSH planner on which the Instinct Planner

is based. I would also like to acknowledge the valuable contribution made by my colleague

Andreas Theodorou to the research programme. Andreas, together with Joanna and myself,

engaged in lengthy discussions about the potential merit of using a real-time transparency

display. The resulting ABOD3 software was coded solely by Andreas, although much of the

design inherits from extensive previous work with BOD, POSH and ABODE carried out by

Dr Bryson and her earlier collaborators. Andreas also integrated the Instinct Server into his

code, to enable us to use ABOD3 with the real-time transparency feed from the Instinct Planner.

Andreas assisted during the Muttering Robot experiment described in Chapter 4, helping with

the gathering of questionnaires over three days at the At-Bristol Science Centre. Finally, Andreas

reviewed and contributed ideas to the drafts of papers related to the work described in Chapter 3.

I would also like to thank Dr Swen Gaudl, who spent considerable time helping me to understand

Bryson’s POSH reactive planning paradigm, and also advised me on style and presentation for

our Instinct Planner paper related to the work described in Chapter 2 (Wortham, Gaudl and

Bryson, 2016). Dr Vivienne Rogers also assisted during the data collection for the Muttering

Robot Experiment, and took the lead on the grant application that helped to fund expenses

during that work. She also reviewed the resulting paper, validating the data analysis.

The code for the R5 robot, the Instinct Planner and associated iVDL, and the Instinct Robot

World was developed solely by myself. In the experimental studies of Chapters 3-5, I designed
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and lead the experiments, and performed the necessary data analysis.

The main contributions of this dissertation can be summarised as follows:

1. Engineering Contributions — Instinct Planner, R5 Robot, Instinct Visual Design Lan-

guage, Instinct Robot World. These artefacts were used to conduct experiments throughout

the research programme, and are documented and available on an open source basis for

others to use as they wish.

2. I investigate the effect of transparency using a real-time display, demonstrating that

providing even a simple, abstracted real-time visualisation of a robot’s AI can radically

improve the transparency of machine cognition.

3. I demonstrate that the addition of vocalisation is associated with a significant improvement

in understanding of the robot, comparable with the results obtained using a real-time

display.

4. I demonstrate that trivial embellishment of a robot to alter its form has significant effects

on our understanding and attitude towards it.

5. I show that a ‘talking’ robot greatly increases the confidence of naive observers to report

that they understand a robot’s behaviour when seen on video, irrespective of their actual

mental model accuracy.

6. I also show that our robot transparency techniques have only a marginal but generally

positive effect on human emotional response.

7. Based on these investigations for transparency, I synthesise an argument to support the

assertion that we have a moral responsibility to make robots transparent, so as to reveal

their true machine nature.

In the following chapter I describe the engineering contributions in some detail. The subse-

quent chapters go on to describe a series of experiments to investigate the affects of real-time

transparency measures to improve the mental models of naive subjects.
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Chapter 2

A Transparent Robot Control
Architecture

“Ah, the architecture of this world. Amoebas may not have backbones, brains, automobiles,
plastic, television, Valium or any other of the blessings of a technologically advanced
civilization; but their architecture is two billion years ahead of its time.”

— L.L. Larison Cudmore, The Center of Life: A Natural History of the Cell (1977)

2.1 Summary

This chapter documents the design and engineering work involved in building the Instinct

Planner and the R5 robot, prior to their use in subsequent robot transparency experiments,

described in the following chapters. It also describes an experiment to investigate how the

Instinct Planner can be used to control robots within the Instinct Robot World simulation

environment, and how two instances of the planner can be configured to create a mind capable of

adapting the robots’ behaviour to achieve a higher order goal. This chapter therefore describes

engineering contributions that support our later experiments.

The Instinct Planner is a new biologically inspired reactive planner, based on an established

behaviour based robotics methodology and its reactive planner component — the POSH planner

implementation. It includes several significant enhancements that facilitate plan design and

runtime debugging. It has been specifically designed for low power processors and has a tiny

memory footprint. Written in C++, it runs efficiently on both ARDUINO (ATMEL AVR) and

MICROSOFT VC++ environments and has been deployed within the low cost R5 robot to study

AI Transparency.
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2.2 Introduction

From the 1950’s through to the 1980’s the study of embodied AI assumed a cognitive symbolic

planning model for robotic systems — SMPA (Sense Model Plan Act) — the most well known

example of this being the Shakey robot project (Nilsson, 1984). In this model the world is first

sensed and a model of the world is constructed within the AI. Based on this model and the

objectives of the AI, a plan is constructed to achieve the goals of the robot. Only then does the

robot act. Although this idea seemed logical and initially attractive, it was found to be quite

inadequate for complex, real world environments. Generally the world cannot be fully modelled

until the robot plan is underway, since sensing the world requires moving through it. Also,

where environments change faster than the rate at which the robot can complete its SMPA cycle,

the planning simply cannot keep up. Brooks (1991a) provides a more comprehensive history,

which is not repeated here.

In the 1980’s Rodney Brooks and others (Breazeal and Scassellati, 2002) introduced the then

radical idea that it was possible to have intelligence without representation (Brooks, 1991b).

Brooks developed his subsumption architecture as a pattern for the design of intelligent embodied

systems that have no internal representation of their environment, and minimal internal state.

These autonomous agents could traverse difficult terrain on insect-like legs, appear to interact

socially with humans through shared attention and gaze tracking, and in many ways appeared

to posses behaviours similar to that observed in animals. However, the systems produced by

Brooks and his colleagues could only respond immediately to stimuli from the world. They had

no means of focusing attention on a specific goal or of executing complex sequences of actions

to achieve more complex behaviours. The original restrictions imposed by Brooks’ subsumption

architecture were subsequently relaxed with later augmentations such as timers, effectively

beginning the transition to systems that used internal state in addition to sensory input in order

to determine behaviour.

Biologically inspired approaches are still favoured by many academics, although a wide gap

exists between existing implementations and the capabilities of the human mind (Samsonovich,

2013). Today, the argument persists concerning whether symbolic, sub-symbolic or hybrid

approaches are best suited for the creation of powerful cognitive systems (Lieto, Chella and

Frixione, 2016). Here we concern ourselves more specifically with action selection as a core

component of any useful cognitive architecture.
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2.2.1 From Ethology to Robots

Following in-depth studies of animals such as gulls in their natural environment, ideas of how

animals perform action selection were originally formulated by Nico Tinbergen and other

early ethologists (Tinbergen, 1951; Tinbergen and Falkus, 1970). Reactions are based on

pre-determined drives and competences, but depend also on the internal state of the organism

(Bryson, 2000). Bryson (2001) harnessed these ideas to achieve a major step forwards with

the POSH (Parallel Ordered Slipstack Hierarchy) reactive planner and the BOD (Behaviour

Oriented Design) methodology, both of which are strongly biologically inspired.

It is important to understand the rationale behind biologically inspired reactive planning. It

is based on the idea that biological organisms constantly sense the world, and generally react

quickly to sensory input, based on a hierarchical set of behaviours structured as Drives, Compe-

tences and Action Patterns. Their reactive plan uses a combination of sensory inputs and internal

priorities to determine which plan elements to execute, ultimately resulting in the execution of

leaf nodes in the plan, which in turn execute real world actions. For further reading see Gurney,

Prescott and Redgrave (1998), Prescott, Bryson and Seth (2007) and Seth (2007).

A POSH plan consists of a Drive Collection (DC) containing one or more Drives. Each Drive

(D) has a priority and a releaser. When the Drive is released as a result of sensory input,

a hierarchical plan of Competences, Action Patterns and Actions follows. POSH plans are

authored, or designed, by humans alongside the design of senses and behaviour modules. An

iterative approach is defined within BOD for the design of intelligent artefacts — these are

known as agents, or if they are physically embodied, robots.

At run-time, the reactive plan itself is essentially fixed. Various slower reacting systems may

also be used to modify priorities or other parameters within the plan. These slower reacting

systems might be compared with emotional or endocrinal states in nature that similarly affect

reactive priorities (Gaudl and Bryson, 2014). Similarly the perception of senses can be affected

by the internal state of the plan, an example being the latching (or hysteresis) associated with

sensing (Rohlfshagen and Bryson, 2010).

In nature, the reactive plan is subject to possible learning that may change the plan parameters or

even modify the structure of the plan itself as new skills and behaviours are learned. This learning

may take place ontogenetically, i.e. within the lifetime of an individual, or phylogenetically,

by the process of natural selection, across the lifetimes of many individuals. Bryson’s BOD

approach suggests that humans provide most of the necessary learning in order to improve the

plan over time, in place of natural selection. However Gaudl (2016) successfully uses genetic

algorithms to automate part of this learning process, albeit within a computer game simulation.
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A reactive plan is re-evaluated on every plan cycle, usually many times every second, and

this requires that the inquiries from the planner to the senses and the invocation of actions

should respond quickly. This enables the reactive plan to respond quickly to changes in the

external environment, whilst the plan hierarchy allows for complex sequences of behaviours

to be executed. Applying these ideas to robots we can see that for senses, this might imply

some caching of sense data (Bryson and McGonigle, 1998). For actions, it also implies that

long running tasks (relative to the rate of plan execution), need to not only return success or

failure, but also another status to indicate that the action is still in progress and the plan must

wait at its current execution step before moving on to its next step. The action may be executing

on another thread, or may just be being sampled when the call to the action is made. This is

implementation specific and does not affect the functioning of the planner itself. If re-invoked

before it completes, the action immediately returns an In-Progress response. In this way, longer

running action invocations do not block the planner from responding to other stimuli that may

still change the focus of attention by, for example, releasing another higher priority Drive.

Each call to the planner within the overall scheduling loop of the robot starts a new plan cycle. In

this context an action may be a simple primitive, or may be part of a more complex pre-defined

behaviour module, such as a mapping or trajectory calculation subsystem. It is important to note

that the BOD methodology does not predicate that all intelligence is concentrated within the

planner. Whilst the planner drives action selection either directly or through indirect invocation

of competences or action patterns, considerable complexity can still exist in sensory, actuation

and other probabilistic or state based subsystems within the overall agent (Bryson, 2001).

The computer games industry has advanced the use of AI for the simulation of non player

characters (Lim, Baumgarten and Colton, 2010). Behaviour trees are similarly hierarchical to

POSH plans, but have additional elements that more easily allow logical operations such as

AND, OR, XOR and NOT to be included within the plan. For example it is possible for a goal

to be reached by successfully executing only one of a number of behaviours, trying each in turn

until one is successful. Bryson’s original design of POSH does not easily allow for this kind of

plan structure.

Behaviour trees are in turn simplifications of Hierarchical Task Network (or HTN) planners

(Ghallab, Nau and Traverso, 2004). Like POSH, HTN planners are able to create and run plans

that contain recursive loops, meaning that they can represent any computable algorithm. An

interesting parallel can be drawn here with Complexity theory. Holland (2014) argues that a

Complex Agent System (CAS) is often characterized by the fact that it can be decomposed

into a set of hierarchical layers, with each layer being Turing complete. For a biological entity

Holland identifies these layers as existing at the levels of DNA, organelle, cell, organ, organism

and social levels. For an artificial agent we can identify these layers as computer hardware,
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operating system, application programming language, reactive planner, plan, agent and social

levels. Thus we can argue that to create an artificial agent truly capable of emergent implicit

behaviour, we should strive to ensure that the Planner on which its behaviour depends should be

Turing complete, particularly allowing looping and recursion.

2.3 The R5 Robot

I designed and constructed a low cost maker robot1, and subsequently named it ‘R5’ attempting

to choose a simple, non-anthropomorphic name. R5 was originally designed as a platform to

investigate robot control architectures, and the interaction between humans and robots. It is

based on the ARDUINO micro-controller (Arduino, 2016), see Figure 2-1. The robot is used in

the experiments detailed in Chapters 3, 4 and 5.

The R5 robot has active infra-red distance sensors at each corner and proprioceptive sensors

for odometry (distance travelled) and drive motor current. It has a head with two degrees of

freedom, designed for scanning the environment. Mounted on the head is a passive infra-red

(PIR) sensor to assist in the detection of humans, and an ultrasonic range finder with a range

of five metres. It also has a multicoloured LED “headlight” that may be used for signalling

to humans around it. The robot is equipped with a speech synthesis module and loudspeaker,

enabling it to vocalise textual sentences generated as the robot operates. In noisy environments,

a blue-tooth audio module allows wireless headphones or other remote audio devices to receive

the vocalisation output. The audio output is also directed to a block of four red LEDs, that pulse

synchronously with the sound output. It also has a real-time clock (RTC) allowing the robot to

maintain accurate date and time, a wifi module for communication and an electronically erasable

programmable read only memory (EEPROM) to store the robot’s configuration parameters. This

leverages the Instinct Planner’s ability to serialise plans as a byte stream, and then reconstitute

the plan from that stream at startup. The robot software is written as a set of C++ libraries. The

R5 robot command set is provided in Appendix B. A robot’s action selection system is crucial to

its operation, and I designed the Instinct Planner to provide an autonomous control mechanism

for the R5 robot.

1Design details and software for the R5 Robot: http://www.robwortham.com/r5-robot/

25

http://www.robwortham.com/r5-robot/


Figure 2-1: The R5 Robot. This photograph shows the head assembly with PIR and ultrasonic
range-finder attached. The loudspeaker and blue-tooth audio adapter are also visible. The four
red LEDs are powered from the audio output, and serve as a visual indication of the vocalisation.
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2.4 The Instinct Planner

To continue to behave intelligently often requires information about how you previously decided

to behave, and what progress has been made so far towards a current goal. This information

is not necessarily available by sensing the world. So, whilst a reactive plan structure is fixed,

as described in Section 2.2.1, important state information is held during plan execution. First

we consider the specific plan control structures that collectively define a POSH reactive plan,

and then proceed to describe the specific enhancements and innovations added by the Instinct

Planner.

The Instinct Planner is a reactive planner based on Bryson’s POSH (Bryson, 2001; Bryson and

Stein, 2001). It includes several enhancements taken from more recent papers extending POSH

(Rohlfshagen and Bryson, 2010; Gaudl and Bryson, 2014), together with some ideas from other

planning approaches, notably Behaviour Trees (BT — Lim, Baumgarten and Colton, 2010).

A POSH plan consists of a Drive Collection (DC) containing one or more Drives. Each Drive

(D) has a priority and a releaser. When the Drive is released as a result of sensory input, a

hierarchical plan of Competences, Action Patterns and Actions follows. One of the features in

POSH is the suspension of one Drive by another. This occurs when a Drive of a higher priority

is released. The lower priority Drive stops executing, but its state is preserved. When the lower

priority Drive becomes active again, execution continues as if uninterrupted, subject to sensory

input. The elements within a POSH plan hierarchy are defined below, beginning with the highest

level of the plan:

• Drive Collection (DC): The Drive Collection—DC—is the root node of the plan—

DC = [D0, . . . ,Di]. It contains a set of Drives Da,a ∈ [0 . . . i] and is responsible for

giving attention to the highest priority Drive. To allow the agent to shift and focus

attention, only one Drive can be active in any given cycle. Due to the parallel hierarchical

structure, Drives and their sub-trees can be in different states of execution. This allows

for cooperative multitasking and a quasi-parallel pursuit of multiple behaviours at the

Drive Collection level.

• Drive (D): A Drive—D = [π,ρ,α,A,v]—allows for the design and pursuit of a specific

behaviour, as it maintains its execution state between plan cycles. The Drive Collection

determines which Drive receives attention based on each Drive’s π , the associated priority

of a Drive. ρ is the releaser, a set of preconditions using senses to determine if the drive

should be pursued. Typically the releaser is a simple definition that a sense value must

exceed a specified threshold value, or be equal to a certain logical value for the Drive to

be released. α is either an Action, Action Pattern or a Competence and A is the root link
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to the Drive Collection. The last parameter v specifies the execution frequency, allowing

POSH to limit the rate at which the Drive can be executed. This allows for coarse grain

concurrency of Drive execution (see below).

• Competence (C): Competences form the core part of POSH plans. A competence C =

[c0, . . . ,c j] is a self-contained basic reactive plan (BRP) where cb = [π,ρ,α,η ],b ∈
[0, . . . , j] are tuples containing π , ρ , α and η: the priority, precondition, child node of

C and maximum number of retries of the specific element cb within C. The priority

determines which of the child elements to execute, selecting the one with the highest

priority first, provided it can be released. The precondition is a concatenated set of

senses that either release or inhibit the child node α . The child node itself can be another

Competence or an Action or Action Pattern. To allow for noisy environments a child node

cb can fail a number of times, specified using η , before the Competence considers the

child node to have failed. A Competence sequentially executes its hierarchically organised

child-nodes where the highest priority node is the competence goal. A Competence fails

if no child can execute or if an executed child fails.

• Action Pattern (AP): Action patterns are used to reduce the computational complexity of

search within the plan space and to allow a coordinated fixed sequential execution of a

set of elements. An action pattern—AP = [α0, . . . ,αk]—is an ordered set of Actions that

does not use internal precondition or additional perceptual information. It provides the

simplest plan structure in POSH and allows for the optimised execution of behaviours.

An example would be an agent that always shouts and moves its hand upwards when

touching an hot object. In this case, there is no need for an additional check between the

two Action primitives if the agent should always behave in that manner. APs execute

all child elements in order before completing, provided previous Actions within the AP

complete successfully.

• Action (A): Actions represent the leaf nodes in the reactive plan hierarchy. An action

invokes a behaviour primitive encoded within the Agent. These behaviour primitives

may be simple, such as halting robot motion, or may be more complex, such as initiating

a process to turn a robot in a specific direction. Instinct adds the concept of an Action

Value, a parameter stored within the Action and passed as a parameter to the underlying

primitive behaviour. This allows specific Actions to be encoded within the Instinct plan

that invoke more general purpose behaviour primitives, typically contained within a

behaviour library. A simple example would be a primitive to turn a robot by an angle

specified in the Action Value parameter. In the case of simple and immediate actions,

the primitive behaviour returns either SUCCESS or FAIL. For more complex, longer

running behaviours the immediate return value would be IN PROGRESS, indicating that
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the requested behaviour has commenced, but is not yet complete. Subsequent invocations

of the behaviour request will return IN PROGRESS until the behaviour finally returns

SUCCESS. These return values are returned by the Action itself, and use by the higher

levels in the reactive plan to determine the plan execution path.

For a full description of the POSH reactive planner, see Bryson (2001). The Instinct Planner

provides a clear, well documented and coherent implementation, and attempts to overcome

some of the criticisms of POSH, primarily those based on observations that the code and

documentation of earlier POSH implementations are hard to navigate.

2.4.1 Enhancements and Innovations

The Instinct Planner includes a full implementation of what we term Drive Execution Optimi-

sation (DEO). DEO avoids a full search of the plan tree at every plan cycle which would be

expensive. It also maintains focus on the task at hand. This corresponds loosely to the function

of consciousness attention seen in nature (Bryson, 2011). A form of this was in Bryson’s original

POSH, but has not been fully implemented in subsequent versions. The Drive, Competence and

Action Pattern elements each contain a Runtime Element ID. These variables are fundamental to

the plan operation. Initially they do not point to any plan element. However, when a Drive is

released the plan is traversed to the point where either an Action is executed, or the plan fails

at some point in the hierarchy. If the plan element is not yet completed it returns a status of

In Progress and the IDs of the last successful steps in the plan are stored in Runtime Element

ID in the Drive, Competence and Action Pattern elements. If an action or other sub element

of the plan returns success, then the next step in the plan is stored. On the next cycle of the

drive (note that a higher priority drive may have interrupted since the last plan cycle devoted

to this drive), the plan hierarchy is traversed again but continues from where it got to last plan

cycle, guided by the Runtime Element IDs. A check is made that the releasers are still activated

(meaning that the plan steps are still valid for execution), and then the plan steps are executed.

If a real world action fails, or the releaser check fails, then the Runtime Element ID is once

again cleared. During execution of an Action Pattern (a relatively quick sequence of actions),

sensory input is temporarily ignored immediately above the level of the Action Pattern. This

more closely corresponds to the reflex behaviour seen in nature. Once the system has started to

act, then it continues until the Action Pattern completes, or an element in the Action Pattern

explicitly fails. Action Patterns are therefore not designed to include Actions with long running

primitive behaviours.

In addition to these smaller changes there are three major innovations in the Instinct Planner

that increase the range of plan design options available to developers:
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• Firstly, the idea of runtime alteration of drive priority. This implementation closely

follows the RAMP model of Gaudl and Bryson (2014) which in turn is biologically

inspired, based on spreading activation in neural networks. Within the Instinct Planner

we term this Dynamic Drive Reprioritisation (DDR) for clarity. DDR is useful to modify

the priority of drives based on more slowly changing stimuli, either external or internal.

For example, a RECHARGE BATTERY drive might be used to direct a robot back to its

charging station when the battery level becomes low. Normally this drive might have a

medium priority, such that if only low priority drives are active then it will return when

its battery becomes discharged to say 50%. However, if there are constantly high priority

drives active, then the battery level might reach a critical level of say 10%. At that point

the RECHARGE BATTERY drive must take highest priority. A comparison can be drawn

here with the need for an animal to consume food. Once it is starving the drive to eat

assumes a much higher priority than when the animal experiences normal levels of hunger.

For example, it will take more risks to eat, rather than flee from predators.

• Secondly, the idea of flexible latching provides for a more dynamic form of sense

hysteresis, based not only on plan configuration, but also the runtime focus of the plan.

This implementation follows the work of Rohlfshagen and Bryson (2010). Within the

Instinct Planner we term it Flexible Sense Hysteresis (FSH) for clarity. This hysteresis

primarily allows for noise from sensors and from the world, but Rohlfshagen’s paper also

has some basis in biology to avoid dithering by prolonging behaviours once they have

begun. If the Drive is interrupted by one of a higher priority, then when the sense is again

checked, it will be the Sense Flex Latch Hysteresis that will be applied, rather than the

Sense Hysteresis. The Sense Flex Latch Hysteresis is typically set to zero, so that no

latching occurs when a Drive is interrupted.

• Thirdly, we enhance the Competences within the plan, such that it is possible to group

a number of competence steps by giving them the same priority. We refer to this as a

priority group. Items within a group have no defined order. Within a priority group,

the Competence itself can specify whether the items must all be successfully executed

for the Competence to be successful (the AND behaviour), or whether only one item

need be successful (the OR behaviour). In the case of the OR behaviour, several items

within the group may be attempted and may fail, before one succeeds. At this point the

Competence will then move on to higher priority items during subsequent plan cycles.

A Competence can have any number of priority groups within it, but all are constrained

to be either AND or OR, based on the configuration of the Competence itself. This

single enhancement, whilst sounding straightforward, increases the complexity of the

planner code significantly, but allows for much more compact plans, with a richer level of
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functionality achievable within a single Competence than was provided with the earlier

POSH implementations which lacked the ability to define the AND behaviour. Note that

some implementations of POSH also left out the OR behaviour.

2.4.2 Multi Platform

The Instinct Planner is designed to be used in multiple environments, and to control robots that

are based on different hardware and software platforms. Instinct runs as a C++ library and has

been extensively tested both within MICROSOFT VISUAL C++ and the ARDUINO development

environments (Arduino, 2016). The ARDUINO uses the ATMEL AVR C++ COMPILER (Atmel

Corporation, 2016a) with the AVR LIBC library (Atmel Corporation, 2016b) — a standards

based implementation of gcc and libc. This arrangement harnesses the power of the VISUAL

C++ Integrated Development Environment (IDE) and debugger, hugely increasing productivity

when developing for the ARDUINO platform, which has no debugger and only a rudimentary

IDE.

Instinct is designed to have a very compact memory architecture, suitable for deployment on

low powered, embedded microcontrollers such as ARDUINO. It uses a single byte to store plan

element IDs within the ARDUINO environment. The planner is thus able to store plans with

up to 255 elements within the very limited 8KB memory (RAM) available on the ARDUINO

MEGA (ATMEL AVR ATMEGA2560 MICROCONTROLLER). However, the Instinct Planner

code is not fundamentally limited to 255 plan elements, and will support much larger plans

on platforms with more memory. In MICROSOFT VISUAL C++ for example, plans with up to

4,294,967,295 nodes are supported, simply by redefining the instinctID type from unsigned

char to unsigned int, a 32 bit value.

A complete implementation of the Instinct Planner exists on the R5 ARDUINO based robot, see

Section 2.3. The robot runs using various test plans, see figure 2-2. It has simple and more

complex underlying behaviours that can be invoked by the planner, such as the ability to turn in

the direction of the most clear pathway ahead, or to use its head to scan for the presence of a

human.

2.4.3 Memory Management

In order to produce a planner that operates effectively in an environment with severely limited

working memory resources (RAM), considerable design effort has been applied to the memory

management architecture within the planner. There are 6 separate memory buffers, each
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Figure 2-2: The R5 ARDUINO based Maker Robot in a laboratory test environment. The camera
mounted on the robot is used to record robot activity, but is not used by the robot itself.

holding fixed record length elements for each element type in the plan — Drives, Competences,

Competence Elements, Action Patterns, Action Pattern Elements and Actions. An instance of

Instinct has a single Drive Collection — the root of the plan.

Within each plan element, individual bytes are divided into bit fields for boolean values, and the

data is normalised across elements to avoid variable length records. This means, for example,

that Competence Elements hold the ID of their parent Competence, but the Competence itself

does not hold the IDs of each of its child Competence Elements. At runtime a search must be

carried out to identify which Competence Elements belong to a given Competence — each

Competence having a unique ID. Thus, the planner sacrifices some search time in return for a

considerably more compact memory representation. Fortunately this search is very fast, since

the Competence Elements are stored within a single memory buffer with fixed length records.

Testing shows the time taken by this searching was negligible in comparison with the plan cycle

rate of the robot.

Plan elements, senses and actions are referenced by unique numeric IDs, rather than by name.
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The memory storage of these IDs is defined within the code using the C++ #typedef prepro-

cessor command, so that the width of these IDs can be configured at compile time, depending

on the maximum ID value to be stored. This again saves memory in an environment where

every byte counts. Consideration of stack usage is also important, and temporary buffers and

similar structures are kept to a minimum to avoid stack overflow.

Fixed strings (for example error messages) and other data defined within programs are usually

also stored within working memory. Within a microcontroller environment such as ARDUINO

this is wasteful of the limited memory resource. This problem has been eliminated in the Instinct

Planner implementation by use of AVR LIBC functions (Atmel Corporation, 2016b) that enable

fixed data to be stored in the much larger program (flash) memory. For code compatibility these

functions have been replicated in a pass-through library so that the code compiles unaltered on

non-microcontroller platforms.

2.4.4 Instinct Testing Environment

As a means to test the functionality of the Instinct Planner within a sophisticated debugging en-

vironment, I implemented the Instinct Planner within a MICROSOFT VISUAL C++ development

environment, and tested a simulation of robots within a grid based world, each using Instinct

for action selection. The world allows multiple robots to roam, encountering one another,

walls, obstacles and so on. I extended this implementation with a graphical user interface to

better show both the world and the real time monitoring available from within the plan, see

Section 2.5.2.

2.4.5 Instinct Transparency Enhancements

The planner has the ability to report its activity as it runs, by means of callback functions to

a monitor C++ class. There are six separate callbacks monitoring the Execution, Success,

Failure, Error and In-Progress status events, and the Sense activity of each plan element. In the

VISUAL C++ implementation, these callbacks write log information to files on disk, one per

robot instance. This facilitates the testing and debugging of the planner. In the ARDUINO robot,

the callbacks write textual data to a TCP/IP stream over a wireless (wifi) link. A JAVA based

Instinct Server receives this information, enriches it by replacing element IDs with element

names, and logs the data to disk. This communication channel also allows for commands to be

sent to the robot while it is running.

With all nodes reporting all monitor events over wifi, a plan cycle rate of 20Hz is sustainable.
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Figure 2-3: Software Architecture of the R5 Robot showing interfaces with the World and the
Instinct Server. The Instinct Planner provides the action selection subsystem of the robot.

By reducing the level of monitoring, we reduce the volume of data sent over wifi and plan cycle

rates of up to 40Hz are achievable. In practice a slower rate is likely to be adequate to control a

robot, and will reduce the volume of data requiring subsequent processing. In our experiments a

plan cycle rate of 8Hz was generally used. Figure 2-3 shows how the planner sits within the

robot software environment and communicates with the Instinct Server.

2.4.6 Instinct Command Set

The robot command set primarily communicates with the planner which in turn has a wide range

of commands, allowing the plan to be uploaded and altered in real time, and also controlling

the level of activity reporting from each node in the plan. When the robot first connects to the

Instinct Server, the plan and monitoring control commands are automatically sent to the robot,

and this process can be repeated at any time while the robot is running. This allows plans to be

quickly modified without requiring any re-programming or physical interference with the robot.
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The Instinct planner command set is provided in Appendix A.

2.4.7 Creating Reactive Plans with iVDL

POSH plans are written in a LISP like notation, either using a text editor, or the ABODE editor

(Brom et al., 2006). However, Instinct plans are written very differently, because they must

use a much more compact notation and they use IDs rather than names for plan elements,

senses and actions. Therefore I developed the Instinct Visual Design Language (iVDL) based

on the ubiquitous Unified Modelling Language (UML) notation. UML is supported by many

drawing packages, and I developed a simple PYTHON export script to allow plans to be created

graphically within the open source DIA drawing tool (Macke, 2014). The export script takes care

of creating unique IDs and allows the plans to use named elements, thus increasing readability.

The names are exported alongside the plan, and whilst they are ignored by the planner itself,

the Instinct-Server uses this export to convert IDs back into names within the log files and

interactive display. Figure 2-4 shows the Instinct plan template within DIA. I use the UML

class notation to define classes for the six types of element within the Instinct plan, and also to

map the external numerical identifiers (IDs) for senses and robot actions to names. I use the

UML aggregation connector to identify the connections between the plan elements, visible as a

diamond at the end of each connector. This can be read, for example, as “A Drive can invoke

(i.e. be a parent of) an Action, a Competence or an Action Pattern”.
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Figure 2-4: Instinct Plan element types and their relationship, shown within the DIA drawing
tool. The parameters for each element type are shown with their default values. The diamond
on a connector indicates ‘may be a parent of’. For example, a Competence may only be the
parent of one or more Competence Elements.
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Figure 2-5 shows a plan for the R5 robot. At this level of magnification the element details

are not legible, but this screen shot gives an impression of how plans can be laid out within

DIA. A larger version of the plan is provided in Appendix C. This particular plan searches the

robot’s environment, avoiding objects and adjusting its speed according to the space around it.

As the robot moves around it attempts to detect humans within the environment. The robot also

temporarily shuts down in the event of motor overload, and it will periodically hibernate when

not in open space to conserve battery power. Such a plan might be used to patrol hazardous

areas such as industrial food freezers, or nuclear facilities.

The plan was designed and debugged within the space of a week. During the debugging, the

availability of the transparency data logged by the Instinct Server was extremely useful, because

mere observation of the robot’s emergent behaviour is frequently insufficient to determine the

cause of plan malfunction.

The actual positioning of plan elements within the drawing is entirely up to the plan designer.

Since DIA is a general purpose graphical editor, other symbols, text and images can be freely

added to the file. This is useful at design time and during the debugging of the robot. It also

provides an additional vehicle for the creation of longer term project documentation. We suggest

that an in-house standard is developed for the layout of plans within a development group, such

that developers can easily read one another’s plans.
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Figure 2-5: The plan used by the R5 robot to enable it to explore an environment, avoid
obstacles, and search for humans. The plan also includes emergency behaviours to detect and
avoid excessive motor load, and to conserve battery by sleeping periodically. See Appendix C
for a larger version of the plan.
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2.4.8 Plan Debugging and Transparency

An important feature of the Instinct Planner is its ability to generate a real-time feed of the

detailed execution of the planner as it operates. This feed is used to assist during debugging

of a robot, and to produce visual and audible information concerning the internal state and

processing of a robot suitable for end users. This is described in more detail in Chapters 3 and 4.

Andreas Theodorou created a new version of the ABODE plan editor (Theodorou, Wortham

and Bryson, 2016), known as ABOD3, from a design specification provided by Joanna Bryson,

and with feedback from the author, as a result of testing. This version reads the real-time

transparency data emanating from the Instinct Planner, in order to provide a real-time graphical

display of plan execution. In this way we are able to explore both runtime debugging and wider

issues of AI Transparency.

2.5 Modelling Robot Control using the Instinct Planner

Having created the Instinct Planner, I was curious to see whether the reactive planning paradigm

could operate at a higher level of abstraction, to modify the behaviour of a robot to achieve

some higher order objective, unrelated to the immediate sensing and movement of the robot.

Could this architecture be used to carry our reinforcement learning, such that a reactive plan is

modified in real time as the robot operates? An important advantage of such an architecture

would be the transparency of the learning mechanism. In the following sections, I describe

the investigation of a small footprint cognitive architecture comprised of two Instinct reactive

planner instances. The first interacts with the world via sensor and behaviour interfaces. The

second monitors the first, and dynamically adjusts its plan in accordance with some predefined

objective function. I show that this configuration produces a Darwinian mind, yet aware of its

own operation and performance, and able to maintain performance as the environment changes.

I identify this architecture as a second-order Darwinian mind, and discuss the philosophical

implications for the study of consciousness. I describe the Instinct Robot World agent based

modelling environment, which in turn uses the Instinct Planner for cognition.

2.5.1 Kinds of Minds

Dennett (1996) elegantly outlines a high level ontology for the kind of creatures that exist in the

natural world, from the perspective of the kinds of minds that these creatures possess. At the

most basic level, the Darwinian creature has a mind that produces ‘hardwired’ behaviours, or

phenotypes, based on the genetic coding of the organism. The mind of the Skinnerian creature is
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plastic, and capable of ‘ABC’ learning — Associationism, Behaviourism, Connectionism. The

Popperian creature’s mind runs simulations to predict the effect of planned actions, anticipating

experience. It therefore permits hypotheses “to die in our head” rather than requiring them to

be executed in the world before learning can take place. Finally, Gregorian creatures (after the

psychologist Richard Gregory) have a sophisticated mind able to import a re-use tools from the

cultural environment, for example language and writing. Using these tools enables a Gregorian

creature, for example a human, to be self-reflective.

Extending this idea to directly classify the minds of these creatures, we may simply identify the

Darwinian mind as the simplest kind of mind, and the Gregorian mind as the most sophisticated.

Figure 2-6: Screen shot of the Instinct Robot World in operation. Each robot is represented as a
single character within the display. Robots are labelled with letters and numbers to distinguish
them. When a robot’s monitor plan becomes active the robot representation changes to the
shriek character (!). The top right section of the screen is used to control the robots and the
plans they use. The Host and Port entries allow real time monitoring of the transparency feed
from the Instinct planners. The bottom right section displays statistics about the world as it runs.

However, perhaps the simple Darwinian mind might also be arranged to monitor itself, and

in some small and limited sense to be aware of its own performance and act to correct it.

Bryson suggests a possible role for consciousness in action selection (Bryson, 2011). Here we

investigate whether action selection achieved through reactive planning might parallel one of the

commonly accepted characteristics of consciousness; that is to be self-reflective and regulating

(Sherman, Gawronski and Trope, 2014).
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2.5.2 Instinct and the Robot World

The Instinct Robot World is a new agent based modelling tool, shown in Figure 2-6. This is

an open source project and all code and configuration files are available online 2. Each virtual

‘robot’ within the Robot World uses an Instinct Planner to provide action selection. Strictly,

since these virtual robots are not physically embodied, we should refer to them as agents.

However, we have chosen to use ‘robot’ throughout, as intuitively these cognitive entities appear

to be virtually embodied within the Robot World, and this choice of language seems more

natural. In Section 2.6 we discuss future work where we may realise physical embodiment of

this architecture in a robot swarm.

The Robot World allows many robots to be instantiated, each with the same reactive plan, or

with a variety of plans. The robots each have senses to sense the ‘walls’ of the environment,

and other robots. The reactive plan invokes simple behaviours to move the robot, adjust its

speed and direction, or interact with robots that it encounters within the world as it moves.

Most importantly for this investigation, each robot also has a second Instinct Planner instance.

This planner monitors the first, and is able to modify its parameters based on a predefined plan.

The Instinct Robot World provides statistical monitoring to report on the overall activity of

the robots within the world. These include the average percentage of robots that are moving

at any one time, the average number of time units (ticks) between robot interactions, and the

average amount of time that the monitor planner intervenes to modify the robot plan. The

operation of the Instinct planners within the robots can also be monitored from the real time

transparency feed, available as a data feed over a TCP/IP connection. This facilitates real time

plan monitoring using tools such as ABOD3, see Section 2.4.8.

We use the Instinct Robot World to investigate the idea of Reflective Reactive Planning —

one reactive planner driving behaviour based on sensory input and predefined drives and

competences, and another reactive planner monitoring performance and intervening to modify

the predefined plan of the first, in accordance with some higher level objective. This simple

combination of two Darwinian minds, one monitoring the other, might also be considered to be

a second-order Darwinian mind.

2.5.3 Conjectures

We expect that second-order Darwinian minds will outperform first order minds when the

environment changes, because the monitor planner is concerned with achieving higher order

objectives, and modifies the operation of the first planner to improve its performance. We also
2http://www.robwortham.com/instinct-planner/
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Figure 2-7: Architecture of the second-order Darwinian mind. The robot is controlled by the
Instinct Reactive Planner, as it interacts with the Sensor model and Behaviour Library. In
turn, a second instance of Instinct monitors the first, together with the Internal robot state, and
dynamically modifies parameters within the robot’s planner. The overall effect is a robot that
not only reacts to its environment according to a predefined set of goals, but is also to modify
that interaction according to some performance measure calculated within the Plan model.

hypothesise that this architecture will remain stable over extended periods of time, because

by restricting ourselves to the reactive planning paradigm we have reduced the number of

degrees of freedom within which the architecture must operate, and previous work described in

Section 2.4 shows that first-order minds produce reliable control architectures (Wortham, Gaudl

and Bryson, 2016). Finally, we expect that such a second-order system should be relatively

simple to design, being modular, well structured and conceptually straightforward.

2.5.4 Methods

Figure 2-7 shows the Reflective Reactive Planning architecture implemented within the Instinct

Robot World, and controlling the behaviour of each robot within that world. The robot plan has

the following simple objectives, each implemented as an Instinct Drive.

• Move around in the environment so as to explore it.

• Avoid objects i.e. the walls marked as ‘X’ in Figure 2-6.
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• Interact when another robot is ‘encountered’ i.e. when another robot is sensed as having

the same coordinates within the grid of the Robot World. This interaction causes the robot

to stop for 200 clock cycles or ‘ticks’.

While the robot is in the ‘Interacting’ state it is shown as a shriek character (!) within the Robot

World display. Once the robot has interacted its priority for interaction decreases, but ramps

up over time. This may be likened to most natural drives, for example mating, feeding and the

need for social interaction.

The Monitor Plan is designed to keep the robot exploring when it is overly diverted from

social interactions. It achieves this by monitoring the time between interactions. If, over three

interactions, the average time between interactions reduces below 1000 ticks, then the Monitor

Planner reduces the priority of the interaction Drive. After 1000 ticks the priority is reset to

its original level. We might use alternative intentional language here to say that the Monitor

Planner ‘notices’ that the robot is being diverted by too many social interactions. It then reduces

the priority of those interactions, so that the robot is diverted less frequently. After some time

the Monitor Planner ceases to intervene until it next notices this situation re-occurring.

The Robot World is populated with varying numbers of robots (2, 3, 5, 10, 20, 50, 100, 200,

500, 1000), and for each number the experiment is run twice, once with a monitor plan, and

once without. For each run, the environment is allowed to run for some time, typically about 10

minutes, until the reported statistics have settled and are seen to be no longer changing over

time.

2.5.5 Outcomes

The results are presented as simple graphs. Firstly, the average number of robots moving at any

one time within the world is shown in Figure 2-8. In both cases, as the number of robots within

the world increases, the amount of time that the robot spends moving reduces. However the

Monitor Planner acts to reduce the extent of this reduction from 60% to less than 20% over the

full range of two to a thousand robots within the world. Similarly, in Figure 2-9 we see that

as more robots are introduced into the world, the average time between interactions naturally

reduces. However, the action of the Monitor Planner progressively limits this reduction, so that

with 1000 robots the time between interactions is almost trebled, from 310 to 885 ticks per

interaction. Interestingly, in both these graphs we see smooth curves both with and without

the action of the monitor plan. The final graph, Figure 2-10 also shows a smooth, sigmoid like

increase in intervention of the Monitor Planner as the number of robots increases, plotted on a

logarithmic scale.

43



0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 10 100 1000
Robots

Robots Moving in the World

No Monitor With Monitor

Figure 2-8: Graph showing the average percentage number of robots that are moving at any one
time within the world, for a given total number of robots in the world. It can be seen that the
addition of the monitor plan maintains more robots moving as the number of robots increases.
Note the x axis log scale for robots in world.

In addition to providing the experimental results for the second-order Darwinian mind, the

Instinct Robot World and the Instinct Planner were together found to be a stable, reliable

platform for our experiments, and the results achieved are readily repeatable by downloading

the software3. The application is single threaded, and so uses only one core of the CPU on the

laptop PC on which it was run. Nevertheless, it was possible to simulate 1000 robots with both

reactive planners active operating in the world at the rate of 70 clock cycles (ticks) per second.

2.5.6 Discussion

From the results we can see that by using a second Instinct instance to monitor the first, we

can achieve real-time learning within a tiny-footprint yet nevertheless symbolic cognitive

architecture. We say the architecture is symbolic because behaviour can be traced to specific

control elements within the reactive plan, each of which is represented by a unique symbol,

within a pre-defined syntactic structure. In addition, since this learning modifies parameters

3https://github.com/rwortham/Instinct-RobotWorld
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Figure 2-9: Graph showing the average time between robot interactions, both with and without
the monitor plan. The addition of the monitor plan reduces the variance in interaction time as
robot numbers vary. Again, note the x axis is log scale.

from a human designed plan, the learning can be well understood and is transparent in nature.

This contrasts strongly with machine learning approaches such as neural networks that typically

learn offline, are opaque, and require a much larger memory workspace. Despite the stochastic

nature of the environment, the performance graphs show smooth curves over a wide range of

robot populations.

This relatively simple experiment also provides further fuel for the fire concerning the philosoph-

ical discussion of the nature of consciousness. Critics may say that when we use the intentional

stance (Dennett, 1989) to describe the behaviour of the Monitor Planner as ‘noticing’ something,

we are merely using metaphor. They might argue that there is in fact no sentience doing any

noticing, and in fact the only ‘noticing’ that is happening here is us noticing the behaviour

of this human designed mechanism, which itself is operating quite without any sentience and

certainly without being conscious (Haikonen, 2013). But that is to miss the point. We are

not claiming that this architecture is conscious in the human or even significant sense of the

word, merely that our architecture is inspired by one aspect of how biological consciousness

appears to operate. However, having shown that this architecture can indeed provide adaptive

control, and drawing on the knowledge that gene expression produces behaviours which can be
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Figure 2-10: Graph showing the average percentage number of robots whose monitor plan is
activated at any one time, for a given number of total robots in the world. The monitor plan
of a robot is activated when the average time between interactions reduces below 1000 ticks,
reducing the priority of the interaction Drive. Note the x axis log scale.

modelled using reactive planning, we might also consider whether consciousness in animals and

humans may indeed arise from complex interactions between hierarchical mechanisms. These

mechanisms are biologically pre-determined by genetics, and yet in combination yield flexible,

adaptive systems able to respond to changing environments and optimise for objective functions

unrelated to the immediate competences of preprogrammed behavioural responses. This is not

to argue for some kind of emergence (Holland, 2000), spooky or otherwise, but more simply to

add weight to the idea that the ‘I’ in consciousness is nothing more than an internal introspective

narrative, and such a narrative may be generated by using hierarchical mechanisms that notice

one another’s internal states, decision processes and progress towards pre-defined (phenotypic)

objectives.

We could certainly envisage a much grander architecture, assembled at the level of reactive

planners, using maybe hundreds or thousands of planners each concerned with certain objectives.

Many of these planners may be homeostatic in nature, whilst others would be concerned with

the achievement of higher level objectives. We must remember that planners merely coordinate

action selection, and say nothing about how sensor models may be formed, nor how complex
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behaviours themselves may be implemented. However, all dynamic architectures need some

kind of decision centric ‘glue’ to bind them together, and reactive planning seems to be a useful

candidate here, as evidenced by practical experiment and biological underpinning.

Machine transparency is a core element of our research. We show in Section 3 that reactive

planners, particularly the Instinct Planner, are able to facilitate transparency. This is due to the

human design of their plans, and the ability to gather meaningful symbolic information about

internal system state and decision processes in real-time as the planner operates. This ability to

inspect the operation of the architecture may assist designers in achieving larger scale cognitive

implementations. Equally importantly, transparency is an important consideration for users

and operators of intelligent systems, particularly robots, and this is highlighted in the EPSRC

Principles of Robotics (Boden et al., 2011).

The human brain does not run by virtue of some elegant algorithm. It is a hack, built by the

unseeing forces of evolution, without foresight or consideration for modularity, transparency or

any other good design practice. If we are to build intelligent systems, the brain is not a good

physical model from which we should proceed. Rather, we should look at the behaviours of

intelligent organisms, model the way in which these organisms react, and then scale up these

models to build useful, manageable intelligent systems.

Whilst our Reflective Reactive Planner is a very simple architecture, it does share many of

the characteristics cited for architectures that are worthy of evaluation, such as efficiency and

scalability, reactivity and persistence, improvability, and autonomy and extended operation

(Langley, Laird and Rogers, 2009). In addition, the Instinct planner’s transparency feed provides

a useful debugging interface, particularly when used in conjunction with the ABOD3 real time

debugging tool. The importance of real time action selection transparency is discussed in more

detail in Section 6. We hope that our work with reactive planners might strengthen the case for

their consideration in situations where decision centric ‘glue’ is required.

2.6 Conclusions and Further Work

The Instinct planner is the first major re-engineering of Bryson’s original work for several years,

and the first ever allowing deployment in practical real time physical environments such as the

R5 ARDUINO based maker robot.

By using a very lean coding style and efficient memory management, we maximise the size

of plan that can be dynamically loaded whilst maintaining sufficient performance in terms of

execution rate.
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The transparency capabilities, novel to this implementation of POSH, provide the necessary

infrastructure to deliver real time plan debugging. The transparency feed is available from both

the R5 robot and the Instinct Robot World via a TCP/IP communications link, facilitating remote

real time debugging, particularly with the ABOD3 real time plan debugger. The importance of

real time action selection transparency is discussed in more detail in Section 6.

The Visual Design Language (iVDL) is a novel representation of reactive plans, and we

demonstrate that such plans can be designed using a standard drawing package and exported

with a straightforward plug-in script. We envisage the development of similar plug-ins for other

drawing tools such as MICROSOFT VISIO.

We have demonstrated that a second-order Darwinian mind may be constructed from two

instances of the Instinct reactive planner as shown by the results obtained from the Instinct

Robot World experiment. This architecture, which we call Reflective Reactive Planning,

successfully controls the behaviour of a virtual robot within a simulated world, according to

pre-defined goals and higher level objectives. We have shown how this architecture may provide

both practical cognitive implementations, and inform philosophical discussion on the nature

and purpose of consciousness.

Although primarily developed for physical robot implementations, the Instinct Planner, as

demonstrated by the Instinct Robot World, has applications in teaching, simulation and game

AI environments. The Instinct Robot World provides a GUI based test platform for Instinct, and

may also be used as a teaching tool to teach the concepts of reactive planning in general and the

Instinct Planner in particular.

We would like to see the implementation of Instinct on other embedded and low cost Linux

computing environments such as the RASPBERRY PI (Raspberry Pi Foundation, 2016). With

more powerful platforms such as the PI, much larger plans can be developed and we can test

both the runtime performance of very large plans, and the design efficiency of iVDL with

multi-user teams.

The Instinct Robot World is an entirely open source platform, available online. We welcome

those interested in agent based modelling, cognitive architectures generally, and reactive plan-

ning specifically, to investigate these technologies and offer suggestions for new applications

and further work. One possibility might be to apply this architecture to the Small Loop Problem

(Georgeon, Marshall and Gurney, 2013), a specific challenge for biologically inspired cognitive

architectures.

Having developed and tested the Instinct Planner and the R5 robot, our research programme

subsequently concentrates on using these technologies to investigate the extent to which naive
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humans understand robots, and how we might make robots more transparent, such that they are

better understood. The following chapter details robot transparency experiments using the R5

robot with the ABOD3 real-time graphical debugging tool.
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Chapter 3

The Impact of Transparency using
Real-time Displays

“[Marvin Minsky’s] basic interest seemed to be in the workings of the human mind and in
making machine models of the mind. Indeed, about that time he and a friend made one of
the first electronic machines that could actually teach itself to do something interesting. It
monitored electronic ‘rats’ that learned to run mazes. It was being financed by the Navy.
On one notable occasion, I remember descending to the basement of Memorial Hall, while
Minsky worked on it. It had an illuminated display panel that enabled one to follow the
progress of the ‘rats’. Near the machine was a hamster in a cage. When the machine
blinked, the hamster would run around its cage happily. Minsky, with his characteristic elfin
grin, remarked that on a previous day the Navy contract officer had been down to see the
machine. Noting the man’s interest in the hamster, Minsky had told him laconically, “The
next one we build will look like a bird.” ”

— Jeremy Bernstein

3.1 Summary

Deciphering the behaviour of intelligent others is a fundamental characteristic of our own

intelligence. As we interact with complex intelligent artefacts, humans inevitably construct

mental models to understand and predict their behaviour. If these models are incorrect or

inadequate, we run the risk of self deception or even harm. In this chapter we investigate the

use of a real-time display and demonstrate that providing even a simple, abstracted real-time

visualisation of a robot’s AI can radically improve the transparency of machine cognition.

Findings from both an online experiment using a video recording of a robot, and from direct
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observation of a robot show substantial improvements in observers’ understanding of the robot’s

behaviour. Unexpectedly, this improved understanding is correlated in one condition with an

increased perception that the robot was ‘thinking’, but in no conditions was the robot’s assessed

intelligence impacted.

3.2 Introduction

The fourth of the five EPSRC Principles of Robotics asserts that Robots are manufactured

artefacts. They should not be designed in a deceptive way to exploit vulnerable users; instead

their machine nature should be transparent. (Boden et al., 2011). Why is transparency important,

and how does it impact AI system design? There has been considerable previous research to

investigate ways in which robots can understand humans (Lee and Makatchev, 2009). However

transparency is the converse. Here we are interested in how robots should be designed in order

that we can understand them.

Humans have a natural if limited ability to understand others, however this ability has evolved

and developed in the environment of human and other animal agency, which may make assump-

tions artificial intelligence does not necessarily conform to. Therefore it is the responsibility

of the designers of intelligent systems to make their products transparent to us (Wortham and

Theodorou, 2017; Theodorou, Wortham and Bryson, 2017).

It is generally thought that many forms of effective interaction, whether cooperative or coercive,

rely on each party having some theory of mind (ToM) concerning the other (Wortham and

Bryson, 2018; Saxe, Schulz and Jiang, 2006). Individual actions and complex behaviour patterns

can be more easily interpreted within a pre-existing ToM framework, often created through

modelling from one’s own expectations by projection to the others’ identity. Whether that

ToM is entirely accurate is unimportant, provided that it is sufficiently predictive to inform

one’s own action selection (Barsalou, 2009). Ideally such ‘good enough’ modelling should

include an accurate assessment of how inaccurate our model might be. However, in the case

of AI humans have been repeatedly shown to over-identify with machines, even to their own

detriment (Salem et al., 2015). This holds true for 6-month-old babies, so cannot be attributed to

or easily solved by implicit enculturation (Kamewari et al., 2005). Therefore, explicit strategies

for communicating the nature of an artefact’s intelligence are called for. Humans have a strong

tendency to anthropomorphise not only nature, but anything around them (Dautenhahn, 2007)

— the Social Brain Hypothesis (Dunbar, 1998) may explain this phenomenon. As we interact

with complex intelligent artefacts, we construct anthropomorphic models to understand and

predict their behaviour. If these models are incorrect, or inadequate, we are at best at risk of
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being deceived and at worse at risk of being harmed.

In robot-human collaborative scenarios, transparency has been shown to improve the quality

of teamwork (Breazeal et al., 2005). It is also a key factor when humans attribute credit and

blame in these collaborative scenarios (Kim and Hinds, 2006). Increased robot transparency is

associated with reduced assignment of credit or blame to the robot, and increased assignment to

humans. This increased focus on and facilitation of human agency in collaborative robot-human

tasks is a desirable outcome, because it allows automation to empower and enhance its human

users.

Writers such as Mueller (2016) and Cramer (2007) suggest that as intelligent systems become

both increasingly complex and ubiquitous, it becomes increasingly important that they are self

explanatory, so that users can be confident about what these systems are doing and why. Robot

designers have long recognised that any complex autonomous control strategy, combined with

the complex real-world environment that differentiates robotics from ordinary AI, necessarily

results in non-repeatable behaviour and unexpected conditions (Collett and MacDonald, 2006).

Whilst many authors have recently focussed on dialogue and explanation as a solution to

transparency, such systems are not appropriate to every circumstance, both because of the

computational overhead for AI natural language systems, and the cognitive and temporal costs

of dialogue. Authors such as Mueller (2016) see explanation as critical to one of the three main

characteristics of transparent computers, the others being dialogue and learning.

Transparency is of particular importance when deploying robots in environments where those

who interact with them may be vulnerable, such as in care homes or hospitals (Sharkey and

Sharkey, 2012), or equally in high-risk environments where misunderstanding a robot may have

dangerous consequences.

Note that the need for users to form a useful model of a robot is orthogonal to issues of

verification of robot behaviour. Whilst others have concentrated their research on making a

robot safe and predictable (Fisher, Dennis and Webster, 2013; Winfield, Blum and Liu, 2014),

here we are interested here in the models that observers of a robot use to understand and predict

its behaviour. The novelty of our experiments is that unlike other transparency studies in the

literature which concentrate on human-robotics collaboration, our study focuses on unplanned

robot encounters, where human interactors were not necessarily anticipating working with an

artificial system at all, let alone a particular system they may have been trained to use.

Here we demonstrate that even abstracted and unexplained real-time visualisation of a robot’s

priorities can substantially improve human understanding of machine intelligence, including for

naive users.
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Subjects watch a video of, or directly observe, a robot interacting with a researcher, and

report their theories about what the robot is doing and why. Some of these reports are wildly

inaccurate, and interestingly many conclude that the robot’s objectives and abilities are far

more complex than they in fact are. Nevertheless and importantly, we find that simply showing

the runtime activation of the robot’s action selection along with its behaviour results in users

building significantly more accurate models. To our knowledge, this is the first real-time visual

presentation of reactive robot plans using a graphical plan representation.

3.3 Technologies Used: Reactive Planning and Robot Transparency

We use the R5 robot for our experiments, described in Section 2.3. We use reactive planning

techniques to build transparent AI for the robot, described in Chapter 2. We deploy the Instinct

reactive planner (Wortham, Gaudl and Bryson, 2016) as the core action selection mechanism for

the R5 robot, described in Section 2.4. The reactive plan for the robot is shown in Appendix C.

3.3.1 The Transparent Planner

The Instinct Planner includes significant capabilities to facilitate plan design and runtime

debugging. It reports the execution and status of every plan element in real time, allowing

us to implicitly capture the reasoning process within the robot that gives rise to its behaviour.

The planner reports its activity as it runs, by means of callback functions to a ‘monitor’ — an

instance of a C++ class with a pre-defined interface. There are six separate callbacks monitoring

the Execution, Success, Failure, Error and In-Progress status events, and the Sense activity of

each plan element. In the R5 robot, the callbacks write textual data to a TCP/IP stream over

a wireless (WiFi) link. A JAVA based Instinct Server receives this information and logs the

data to disk. This communication channel also allows for commands to be sent to the robot

while it is running. Figure 3-1 shows the overall architecture of the planner within the R5 robot,

communicating via WiFi to the logging server.

3.3.2 Robot Drives and Behaviours

The robot’s overall function is to search a space looking for humans. Typical real world

applications would be search and rescue after a building collapse, or monitoring of commercial

cold stores or similar premises. The complete plan for the robot is provided in Appendix C.

The robot reactive plan has six Drives. These are (in order of highest priority first):
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Figure 3-1: R5 Robot Software Architecture. The arrows represent the primary data flows
between the various modules. The Server may be the Instinct Server, which logs the transparency
feed to disk, or it may be the ABOD3 real-time graphical debugging tool, see Figure 3-2.

• Sleep — this Drive has a ramping priority. Initially the priority is very low but it increases

linearly over time until the Drive is released and completes successfully. The Drive is

only released when the robot is close to an obstacle and is inhibited whilst the robot

confirms the presence of a human. This is to prevent the robot sleeping in the middle of

an open space where it may present a trip hazard. The sleep behaviour simply shuts down

the robot for a fixed interval to conserve battery power.

• Protect Motors — released when the current drawn by the drive motors reaches a threshold.

This might happen if the robot encounters a very steep incline or becomes jammed

somehow. The Drive invokes an Action Pattern that stops the robot, signals for help and

then pauses to await assistance.

• Moving So Look — simply enforces that if the robot is moving, it should be scanning

ahead for obstacles. This has a high priority so that this rule is always enforced whatever

else the robot may be doing. However, it is only triggered when the robot is moving and
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the head is not scanning.

• Detect Human — released when the robot has moved a certain distance from its last

confirmed detection of a human, is within a certain distance of an obstacle ahead, and

its Passive Infrared (PIR) detects heat that could be from a human. This Drive initiates

a fairly complex behaviour of movement and coloured lights designed to encourage a

human to move around in front of the robot. This continues to activate the PIR sensor

thus confirming the presence of a human (or animal). It is of course not a particularly

accurate method of human detection.

• Emergency Avoid — released when the robot’s active infrared corner sensors detect

reflected infrared light from a nearby obstacle. This invokes a behaviour that reverses the

robot a small distance and turns left or right a fixed number of degrees. Whether to turn

left or right is determined by which direction appears to be less blocked, as sensed by the

active infrared detectors.

• Roam — released whenever the robot is not sleeping. It uses the scanning ultrasonic

detector to determine when there may be obstacles ahead and turns appropriately to avoid

them. It also modulates the robot’s speed and the rate of scanning depending on the

proximity of obstacles.

3.3.3 Real-Time Plan Debugger

We use the new version of the ABODE plan editor for POSH plans, ABOD3, as seen in Figure 3-

2 (Theodorou, 2016). This is the first version of ABODE to support real-time visualisation.

ABOD3 has been enhanced by Andreas Theodorou to directly read Instinct plans, and also to

read a log file containing the real-time transparency data emanating from the Instinct Planner,

in order to provide a real-time graphical display of plan execution. ABOD3 is also able to

display a video and synchronise it with the debug display. In this way it is possible to explore

both runtime debugging and wider issues of AI Transparency. This facility is used in the first

experiment. ABOD3 is also able to process and display a real-time feed of transparency data

directly from the R5 robot as it runs. This facility is used in our second experiment. A larger

screen-shot of ABOD3 is provided in Appendix D.

56



Figure 3-2: ABOD3 display of part of the Instinct plan described in the text. Note the element
labels are readable on the original display. A larger screen-shot of ABOD3 is provided in
Appendix D.

3.4 Methods: The Robot Experiments

Two separate experiments are described. The first uses a video recording of the R5 robot and a

web based online questionnaire. The second experiment involves participants directly observing

the robot in a public space.

3.4.1 Experiment One — Online Video

The robot in the video runs within an enclosed environment where it interacts with various

objects and walls made of different materials. A researcher also interacts with the robot. The

robot’s action selection governs the behaviour of the robot by applying the reactive plan. As

mentioned earlier, a reactive plan encodes the (proactive) priorities of an autonomous robot, and

the conditions when actions can be applied. A record of transparency data in the form of a log

of which plan components are triggered at what time is collected by a remote server running on

a laptop PC via a WiFi connection.
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Using its built-in real time clock, the robot tags the transparency datastream with the start time

of the experiment. It also includes the elapsed time in milliseconds with every datastream event.

In this way the ABOD3 debugger is able to subsequently synchronise the datastream with video

recordings taken during the experiment.

Robot Videos

For our initial study, we chose to video the robot rather than have participants interact with the

robot directly. This research method has recently been chosen by others (Cameron et al., 2015)

with good results. Video has the benefit of ensuring all subjects share identical stimuli.

Figure 3-3: Video of interaction with the robot with noc plan visible (stimulus for Group One in
the first experiment).

The interaction is recorded from two positions at each end of the robot pen, and a camera

mounted on a post attached to the robot also captures a ‘robot’s eye’ view, providing a third

perspective. The resulting composite video is approximately five minutes long. Figure 3-3 is a

single frame from the video. It shows the researcher interacting with the robot. This video was

shown to half of our group of test participants.

Using the ABOD3 tool, we created a second video. A frame from this video is shown in

Figure 3-4. The six Drives described above are clearly visible. As each Drive is released

and the associated behaviours are executed, the plan elements constituting the behaviours are
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highlighted. This highlighting is synchronised with the behaviour of the robot visible in the

video. This gives the viewer access to a great deal more information from the robot than is

available by watching the robot alone. ABOD3 conveniently allows us to collapse the lower

levels in the hierarchy, and position the visible plan elements for ease of understanding. For the

purpose of clarity in the video, we chose to display only the highest levels of the reactive plan,

primarily the Drives.

Figure 3-4: More transparent video showing the ABOD3 plan representation; sub-trees have
been hidden from view (stimulus for Group Two). Note that the drive labels were legible to the
subjects, and can be seen clearly in the printed version of this dissertation, or by zooming the
postscript version. A larger version of this figure is provided in Appendix D. The Drives are
also explained above in Section 3.3.2.

Demographic & Post-Treatment Questionnaires

For the Online video experiment, the participants were initially sent an email questionnaire

prepared using GOOGLE FORMS1 to gather basic demographic data: age, gender, educational

level, whether they use computers, whether they program computers and whether they have

ever used a robot. Based on this information they were then divided into two groups that were

matched as nearly as possible for participant mix. Each group received an identical email

asking them to carefully watch a video and then answer a second questionnaire. Group One was

1Google Forms, see https://docs.google.com/forms/
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directed to the composite video (Fig 3-3), and Group Two to the debug video (Fig 3-4).

Table 3.1 summarises the questions asked after the participant had seen the video. These

questions are designed to measure various factors: the measure of intelligence perceived by the

participants (Intel), the emotional response (if any) to the robot (Emo), and—most importantly—

the accuracy of the participants’ mental model of the robot (MM).

Table 3.1: Post-Treatment Questions for Video and Directly Observed Robot Experiments.

Question Response Category

Is robot thinking? Y/N Intel
Is robot intelligent? 1-5 Intel
Feeling about robot? Multi choice Emo
Understand objective? Y/N MM
Describe robot task? Free text MM
Why does robot stop? Free text MM
Why do lights flash? Free text MM
What is person doing? Free text MM
Happy to be person? Y/N Emo
Want robot in home? Y/N Emo

For analysis, the four free text responses were rated for accuracy with the robot’s actual Drives &

behaviours and given a score per question of 0 (inaccurate or no response), 1 (partially accurate)

or 2 (accurate). The marking was carried out by a single researcher for consistency, without

access to either subject identities or knowledge of which group the subject was in. No special

vocabulary was expected. The questions used in the questionnaire are deliberately very general,

so as not to steer the subject. Similarly, the marking scheme used was deliberately coarse

grained because we are looking for a significant effect at the general level of understanding, not

for a nuanced improvement in the subject’s model.

By summing the scores to give an overall Report Accuracy, the accuracy of the participant’s

overall mental model is scored from 0 to 6 — Question 3 was found to be ambiguous and so is

not included in the scores, see Section 3.5.2 below.
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3.4.2 Experiment Two — Directly Observed Robot

This subsequent experiment took place over three days at the At-Bristol Science Learning

Centre, Bristol, UK. This context was chosen because of available subjects in a controlled

setting.

Figure 3-5: Arrangement of the Directly Observed Robot experiment at At-Bristol. Obstacles
visible include a yellow rubber duck and a blue bucket. The position and orientation of the
transparency display is shown.

The robot operated within an enclosed pen as a special interactive exhibit within the main

exhibition area, see Fig 3-5. Visitors, both adults and children, were invited to sit and observe

the robot in operation for several minutes whilst the robot moved around the pen and interacted

with the researchers. Subjects were expected to watch the robot for at least three minutes before

being handed a paper questionnaire. They then completed the questionnaire, which contained

the same questions as for the Online Video experiment above. During this time subjects were

able to continue to watch the robot in operation.

A large computer monitor was positioned at the front of the pen displaying the ABOD3 real-time
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visualisation of plan execution. This display was either enabled or disabled for periods as the

days progressed to create the Group 2 and Group 1 datasets. Only adult data (age eighteen and

above) is included in the results.

3.5 Results

The demographics of each group of participants is shown in Table 3.2 and Table 3.3. For

the Online Video experiment it was possible to match the groups prior to watching the video.

Priority was given to matching the number of programmers in each group, and to having an

equal gender mix. This was not possible in the Directly Observed Robot experiment, however

Table 3.3 shows the groups were nevertheless well-balanced.

Table 3.2: Online Video Experiment: Demographics of Participant Groups (N = 45)

Demographic Group One Group Two

Total Participants 22 23
Mean Age (yrs) 39.7 35.8
Gender Male 11 10
Gender Female 11 12
Gender PNTS 0 1

STEM Degree 7 8
Other Degree 13 13

Ever worked with a robot? 2 3
Do you use computers? 19 23
Are you a Programmer? 6 8

Table 3.3: Directly Observed Robot Experiment: Demographics of Participant Groups (N = 55)

Demographic Group One Group Two

Total Participants 28 27
Mean Age (yrs) 48.0 40.0
Gender Male 10 10
Gender Female 18 17

STEM Degree 5 9
Other Degree 11 8

Ever worked with a robot? 7 6
Do you use computers? 20 22
Are you a Programmer? 6 5
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3.5.1 Main Findings

The primary results obtained from the experiments are outlined in Table 3.4 and Table 3.5. Data

is analysed using the unpaired t test. First and most importantly, in both experiments there is a

marked difference in the participants’ Report Accuracy scores between Group One (just observe

robot) and Group Two (observe robot and debug display). This confirms a significant correlation

between the accuracy of the participants’ mental models of the robot, and the provision of

the additional transparency data provided by ABOD3. Online Video experiment; t(43)=2.86,

p=0.0065, Directly Observed Robot experiment t(55)=3.39, p=0.0013.

Table 3.4: Online Video Experiment: Main Results. Bold face indicates results significant to at
least p = .05.

Result Group One Group Two

Is thinking (0/1) 0.36 (sd=0.48) 0.65 (sd=0.48)
Intelligence (1-5) 2.64 (sd=0.88) 2.74 (sd=1.07)
Understand objective (0/1) 0.68 (sd=0.47) 0.74 (sd=0.44)
Report Accuracy (0-6) 1.86 (sd=1.42) 3.39 (sd=2.08)

Table 3.5: Directly Observed Robot Experiment: Main Results. Bold face indicates results
significant to at least p = .05.

Result Group One Group Two

Is thinking (0/1) 0.46 (sd=0.50) 0.56 (sd=0.50)
Intelligence (1-5) 2.96 (sd=1.18) 3.15 (sd=1.18)
Understand objective (0/1) 0.50 (sd=0.50) 0.89 (sd=0.31)
Report Accuracy (0-6) 1.89 (sd=1.40) 3.52 (sd=2.10)

Secondly, there is no significant difference in perceived robot intelligence between the two

groups in each experiment, although across experiments the data indicates a slightly higher level

of perceived intelligence when the robot was directly observed; t(98)=1.64, p=0.104.

Thirdly, in the Online Video experiment, a substantially higher number of participants in Group

Two (ABOD3) report that they believe the robot is thinking; t(43)=2.02, p=0.050. However, this

effect is not significantly repeated when the robot is directly observed; t(55)=0.680, p=0.500.

Finally, for participants directly observing the robot, the ABOD3 display significantly affects

their report that they understand what the robot is trying to do; t(55)=3.44, p=0.0011. This is

not the case in the Online Video experiment, where the Group 2 data shows no significant affect;

t(43)=0.425, p=0.673.
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3.5.2 Qualitative Outcomes

Participants also select from a list of possible emotional states: Happy, Sad, Scared, Angry,

Curious, Excited, Bored, Anxious, No Feeling. For the Online Video experiment the data

indicate very little emotional response to the robot in either group, with most participants

indicating either ‘No Feeling’, or only ‘Curious’. However, in the Directly Observed Robot

experiment, participants indicate a higher level of emotional response, summarised in Table 3.6;

t(98)=2.63, p=0.0098.

Table 3.6: Directly Observed Robot Experiment: Self Reported Emotion (N = 55)

Reported Emotion Group One Group Two

Curious 23 23
Excited 5 10
Happy 5 12
No Feeling 4 2
Anxious 0 1
Bored 1 0
Scared 1 0

We had predicted the robot might be more emotionally salient when it was experienced directly.

However, from Table 3.6 it can be seen that curiosity dominates the results. Nevertheless,

the addition of the transparency display may well increase the emotions reported; t(53)=1.91,

p=0.0622. This may be a topic for future investigation.

In the first Online Video experiment, from the answers to the question ‘why does the robot stop

every so often’ it appears that this question is ambiguous. Some understand this to mean every

time the robot stops to scan its environment before proceeding, and only one person took this

to mean the sleep behaviour of the robot that results in a more prolonged period of inactivity.

The question was intended to refer to the latter, and was particularly included because the

Sleep Drive is highlighted by ABOD3 each time the robot is motionless with no lights flashing.

However only one member of Group Two identified this from the video. Due to this ambiguity,

the data related to this question was not considered further in this dataset. This question was

subsequently refined in the second, Directly Observed Robot experiment to ‘Why does it just

stop every so often (when all its lights go out)?’. Six participants then correctly answered this

question and so it is included in the analysis.

Despite the improved performance of Group Two, many members, even those with a Science,

Technology, Engineering or Maths (STEM) degree, still form a poor mental model of the robot.

Here are some notable quotes from STEM participants:
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• [the robot is] “Trying to create a 3d map of the area? At one stage I thought it might be

going to throw something into the bucket once it had mapped out but couldn’t quite tell if

it had anything to throw.”

• [the robot is] “aiming for the black spot in the picture.” [we are unsure of the picture to

which the participant refers]

• “is it trying to identify where the abstract picture is and how to show the complete picture?”

[picture visible in Figure 3-3]

• [the robot] “is circling the room, gathering information about it with a sensor. It moves

the sensor every so often in different parts of the room, so I think it is trying to gather

spacial information about the room (its layout or its dimensions maybe).”

• [the robot] “maybe finding certain colours.”

These comments indicate that in the absence of an accurate model, environmental cues and

possibly previous knowledge of robots are used to help create a plausible narrative.

3.6 Discussion

Across both experiments, there is a significant correlation between the accuracy of the partici-

pants’ mental models of the robot, as indicated by the Report Accuracy scores, and the provision

of the additional transparency data provided by ABOD3. We have shown that a real-time

display of a robot’s decision making produces significantly better understanding of that robot’s

intelligence, even though that understanding may still include wildly inaccurate overestimation

of the robot’s abilities.

Strikingly, there was one further significant result besides the improved mental model. Subjects

in Experiment 1 (Online Video) who observed the real-time display did not think the robot

was more intelligent, but did think it ‘thought’ more. This result is counter-intuitive. We had

expected that if ABOD3 resulted in increased transparency, that there would be a corresponding

reduction in the use of anthropomorphic cognitive descriptions. However at least in this case the

data suggests the reverse is true. When taken with the significant improvement in understanding

of the robot’s actual drives and behaviours, this result implies that an improved mental model is

associated with an increased perception of a thinking agent. Most likely this reflects the still

pervasive belief that navigating in the real world is not a difficult task, so the amount of different

planning steps employed by the robot during the process may come as a surprise. Notably,

with the immediate presence of the robot in the shared environment in the second experiment,
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assessments of thinking under both conditions moved towards ‘50–50’ or complete uncertainty,

though the trend was still in the same direction. The complexity of navigation, balance and

perception has been persistently under-recognised (Brooks, 1991a).

Unlike thinking, intelligence seems to be a term that in ordinary language is often reserved for

conscious decision making. Notably, even where subjects exposed to the ABOD3 visualisations

of the robot’s decision making considered the robot to be thinking more, they did not consider

it to be more intelligent. In fact, the middling marks for intelligence in either condition may

reflect a society-wide lack of certainty about the definition of the term rather than any cognitive

assessment. The relatively large standard deviations for intelligence in Tables 3.4 and 3.5

provide some evidence of this uncertainty. Comparing results from the two experiments, it

might be that the immediacy of the directly observed robot makes the objective more confusing

without transparency and more apparent with transparency. Further investigation would be

required to confirm whether this is repeatable.

In the first experiment, the lack of emotion with respect to the robot was unexpected, and

conflicts with the spontaneous feedback we frequently receive about the R5 robot when people

encounter it in our laboratory or during demonstrations. In these situations we often hear both

quite strong positive and negative emotional reactions. Some find the robot scary or creepy

(McAndrew and Koehnke, 2016), whilst others remark that it is cute, particularly when it

is operational. We hypothesise that the remote nature of the video, or the small size of the

robot on screen, reduce the chance of significant emotional response. Indeed this is confirmed

by the higher levels of emotional response measured when participants directly observe the

robot. Lack of creepyness (Anxious, Scared) may be due to the more controlled setting of

the experiment, or the presence of ‘experts’ rather than peers. It is also interesting that the

transparency display appears to further solicit positive emotional responses. Perhaps this reflects

a delight or satisfaction that the robot behaviour is ‘explained’ by the display.

3.7 Conclusion and Further Work

We have demonstrated that subjects can show marked improvement in the accuracy of their

mental model of a robot observed either directly or on video, if they also see an accompanying

display of the robot’s real-time decision making. In both our pilot study using online video

(N = 45) and our subsequent experiment with direct observation (N = 55), the outcome was

strongly significant. The addition of ABOD3 visualisation of the robot’s intelligence does

indeed make the machine nature of the robot more transparent.

The results of the Online Video experiment imply that an improved mental model of the robot
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is associated with an increased perception of a thinking machine, even though there is no

significant change in the level of perceived intelligence. However, this effect is not seen when

the robot is directly observed. The relationship between the perception of intelligence and

thinking is therefore not straightforward. There is clearly further work to be done to unpack the

relationship between the improved mental model of the robot and the increased perception of a

thinking machine.

Experiment 1 confirms that the approach of using online video with Web based questionnaires

is both effective and efficient in terms of researcher time, and it has enabled us to quickly gather

preliminary results from which further experiments can be planned. However, we did not gather

any useful data about the emotional response of the participants using this methodology. This

may possibly be due to the lack of physical robot presence. Therefore, in situations where the

emotional engagement of users to robots is of interest, the use of video techniques may prove

ineffective. This is explored further in Chapter 5. We also use the Godspeed questionnaire

(Bartneck et al., 2009) in the studies in Chapter 5, both to investigate participant mental models

more widely, and to facilitate comparison with the future work of others.

The technology used to construct the experimental system was found to be reliable, robust and

straightforward to use. The Instinct Planner combined with the iVDL graphical design tool

enabled us to quickly generate a reliable yet sufficiently complex reactive plan for the R5 robot

to allow us to conduct this experiment. The robot and real-time ABOD3 operated reliably over

three days without problems despite some unexpected participant physical handling. Given

the low cost of the platform, we would recommend its use for similar low cost research robot

applications.

The fact that good results were achieved with a pre−α version of ABOD3 gave us high hopes

for its utility not only for visualisation but also for real-time plan debugging. Certainly it proved

able to provide transparency information to untrained observers of an autonomous robot.

In this chapter we have seen how using a graphical display to expose the real-time control state

of a robot substantially improves understanding in lay subjects. A lay observer and technical

specialist may need different levels of detail and future work could include varying the design

of the visualisation dependent both on the robot task and user type. In the following chapter we

investigate an alternative approach to improving transparency, by using vocalisation rather than

a visual display.

67



68



Chapter 4

Transparency using Audio - The
Muttering Robot

“There is something particularly human about using tools; the first and most important tool
being language.”

— Isaac Asimov, Epigraph in Asimov’s Book of Science and Nature Quotations

4.1 Summary

Transparency is an important design consideration for all intelligent autonomous systems.

Previous work shows that a real-time visual display of a robot’s decision making produces

significantly better understanding of that robot’s intelligence. We investigate vocalisation of

behaviour selection as a possible alternative solution for situations where a visual display of

decision making is either impractical or impossible.

In this experiment we find that vocalisation is associated with a significant improvement in

understanding of the robot, comparable with the results obtained using a real-time display. We

also find that vocalisation has no significant effect on participants’ emotional response, though

it may slightly increase positive feelings about the robot. We discuss the relative merits of visual

and vocalised transparency mechanisms, and suggest possible applications.
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4.2 Introduction

The relationship between transparency, trust and utility is complex (Wortham and Theodorou,

2017) but nevertheless it is clear that transparency is an important design consideration for

all intelligent autonomous systems. Transparency has been shown to improve the quality of

teamwork in robot-human collaborative scenarios (Breazeal et al., 2005). It is also a key factor

when humans attribute credit and blame in these collaborative scenarios (Kim and Hinds, 2006).

Increased robot transparency is associated with reduced assignment of credit or blame to the

robot, and increased assignment to humans. This increased focus on and facilitation of human

agency in collaborative robot-human tasks is a desirable outcome, because it allows automation

to empower and enhance its human users.

In Chapter 3 we show that a real-time visual display of a robot’s decision making produces

significantly better understanding of that robot’s intelligence (Wortham, Theodorou and Bryson,

2016, 2017). In this chapter we describe a possible alternative solution for situations where

a visual display of decision making is either impractical or impossible. We use the Instinct

reactive planner (Wortham, Gaudl and Bryson, 2016) to control a small mobile robot, monitor

the hierarchical action selection process, extended with a novel algorithm to convert the output

from the monitor into vocalised (spoken) sentences.

Humans have evolved to produce and comprehend language (Berwick and Chomsky, 2015).

We are able to perform several tasks simultaneously involving language and sharing mental

resources between different cognitive systems (Kempen, Olsthoorn and Sprenger, 2012). This

suggests using language as a likely candidate to enhance robot transparency. The vocalisation

of the robot is, however, not an implicit designed behaviour of the robot reactive plan, but

rather a separate monitoring channel expressed vocally. The result is a robot that ‘mutters’,

continually vocalising the execution of Drives and progress through the reactive plan hierarchy.

The immediate and obvious difficulty with this approach is that the robot executes multiple

reactive plan cycles per second, each traversing many plan elements in the plan hierarchy. It is

thus impossible to report vocally on the initiation and progress of each plan element in real-time.

Our algorithm first generates pre-defined candidate sentences to be uttered, and then uses a

number of novel parametrised approaches to select from these candidates. This algorithm

produces understandable vocalised sentences that usefully convey the decision processes taking

place within the robot in real time. We deploy this algorithm in the R5 robot, and show that

observers’ models of the robot improve significantly when also exposed to the muttering.
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4.3 The Muttering Mechanism

Those interested in the theory of reactive planning and the detailed operation of the Instinct Plan-

ner and R5 robot should read either Wortham, Gaudl and Bryson (2016) or preferably Chapter 2

before they read this explanation of the muttering mechanism. However, this description should

suffice unsupported for those mainly interested in the results of this experiment, and who only

wish to have an understanding of the mechanism used to achieve the muttering behaviour of the

robot. The complete source code for the Instinct Planner is available on an open source basis1,

as is the code for the R5 robot, including the muttering mechanism described in this section2.

As already explained in Chapter 2 the robot behaviour (or action) selection is performed by

the Instinct Planner. The planner combines sensory information gathered by the robot, with

a pre-defined set of Drives, each Drive designed to achieve a specific goal or objective. Each

Drive is expressed as a hierarchically composed plan of Competences, Action Patterns and

ultimately Actions. These actions invoke the behaviour primitives of the robot, such as ‘stop’,

‘turn left’, ‘scan for human’, ‘flash headlight’ and so on.

The planner produces a transparency feed for each execution cycle of the plan. An execution

cycle involves a top down search for the highest priority Drive that is released, and the subsequent

traversal of the plan hierarchy to determine which Action is to be selected, see Section 2.4.

For each cycle the planner produces a stream of data corresponding to the traversal of the plan

hierarchy leading to an action being selected. This stream contains the Plan Element Identifier

(ID) of each plan element, and the status of the plan element. As the planner traverses down

the hierarchy it reports plan element IDs together with the status Executed (E). As the planner

completes the processing of each plan element travelling back up the hierarchy, it again reports

the plan element ID, but this time with the outcome of the execution. The outcome is one of

four options: Success, In Progress, Failed, Error. Success indicates that the plan element has

completed successfully. In Progress indicates either that an underlying physical behaviour of

the robot is still in the process of execution, or that a more complex element such as an Action

Pattern or Competence is part way through its various steps, but as yet not completed. Failed

is a common outcome of a reactive plan, arising from the dynamic and unpredictable world in

which the robot operates. Error is only returned when an internal programming error occurs,

such as a fault in the plan design, or a bug in the software.

In previous work, described in Chapter 3, we used this transparency feed to drive a dynamic

visual display showing the plan execution in real-time, as a means to make the operation of

the robot more transparent. However, there are limitations to this approach, discussed more
1http://www.robwortham.com/instinct-planner/
2http://www.robwortham.com/r5-robot/
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fully in section 4.6, here we generate a stream of audible output to convey at least some of the

information in the transparency feed in real-time to those observing and interacting with the

robot.

From the explanation above, readers will already realise that the transparency data feed consists

of many tens of plan element notifications per second. The data rate of the transparency feed in

notifications per second Rt is given by

Rt = 2RpDp (4.1)

Where Rp is the rate of plan execution and Dp is the depth of the plan hierarchy currently being

executed. For the R5 robot operating with a plan cycle rate of eight cycles per second, a plan

with a hierarchy depth of seven generates 112 notifications per second. It is not possible to

generate meaningful speech output at this rate. Therefore we must be selective. The mechanism

adopted here uses three stages of selectivity, described in the following three subsections.

4.3.1 Transparency Execution Stack

Using the transparency data feed, we first we detect when there are changes in the execution

pattern occurring between two consecutive plan cycles. Real world actions typically take much

longer than a single plan cycle to execute, and so frequently the same route is traversed through

the plan hierarchy many times, with the leaf node Action repeatedly having a status of In

Progress. In order to detect these changes we implement a stack arrangement. Starting from

the initial Drive notification, we store reports of element executions in a stack structure. Once

the leaf node is reached, we traverse the stack in the opposite direction completing the element

status for each plan element. On subsequent plan cycles we check whether the same element

IDs are being executed at each position in the stack. If there is a change we mark it and clear

out all records at lower levels in the stack. This mechanism allows us to gather information

about whether this is the first time a plan element has been executed in this context, and also

whether the execution status has changed from previous executions.

4.3.2 The Speak Rules Engine

The Speak Rules Engine produces pre-defined candidate sentences for each plan Element type

and Event type combination. For example, new executions of Competence elements create

sentences of the form ‘Attempting {plan-element-name}’. The plan element names are stored

within the robot alongside the plan itself, and the plan element IDs from the transparency feed
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are used to locate the correct plan element name relating to the sentence to be constructed.

These element names are processed using ‘camel case’ rules to generate speakable names for

the plan elements. Camel case is a convention where each new word starts with a capital letter,

for example ActivateHumanDetector or ForwardAvoidingObstacle. The processing can also

deal with numbers such as Sleep10Seconds. These speakable plan element names are inserted

into the pre-defined sentences to create sentences of the form ‘Attempting Forward Avoiding

Obstacle’ and ‘Doing Sleep 10 Seconds’.

Based on the information held in the Transparency Execution Stack, we now make decisions

about whether to generate a candidate sentence about each event as it occurs, based on a set of

Speak Rules. The robot holds a matrix of Speak Rule values for each plan element type. The

default values for the Action element type are shown in Table 4.1. Similar tables are stored for

each of the other plan element types. The Timeout defines how long the generated sentence will

Table 4.1: Speak Rules for the Action plan element type.

Event Timeout RptMyself RptTimeout AlwaysSpeak

Executed 800 FALSE 3333 TRUE
Success 500 FALSE 3333 FALSE
In Progress 0 FALSE 0 FALSE
Failed 5000 FALSE 3333 TRUE
Error 5000 FALSE 3333 TRUE

be stored awaiting presentation to the speech output system. After this time-out the sentence will

be discarded. RptMyself is a boolean flag to specify whether the sentence should be repeated,

should it match the last thing uttered by the robot. RptTimeout determines the time after which

the utterance would not be considered to be a repeat. The time-out values are specified in

milliseconds. Finally AlwaysSpeak is a boolean that will force the sentence to be spoken next,

irrespective of whether other sentences are queued, see subsection 4.3.3 below. Considering

the settings in Table 4.1, we see that when an Action is In Progress, no candidate sentence will

be generated. However, when an element is first Executed, Fails or an Error occurs, a higher

priority is given to the candidate sentence that is generated. The R5 robot includes a command

line interface accessible via its wifi link. This interface includes commands to change each of

these parameters individually, and to save them to a permanent storage area within the robot.

Tuning these parameters is at present a matter of iterative human design.
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4.3.3 The Vocaliser

Despite the filtering achieved by the Speak Rules Engine, many more candidate sentences are

still generated than can be spoken. Each is presented to the Vocaliser, along with the various

timeout parameters and boolean flags. The Vocaliser uses a double buffered approach to store

sentences to be spoken. Once the buffers are full, further candidate sentences are discarded until

the sentences are either spoken or replaced, according to the Speak Rule parameters. Since each

sentence is queued before being spoken, there is inevitably some time lag between generation

and utterance, however the timeouts within the Speak Rules ensure that only currently relevant

sentences are actually vocalised. The actual vocalisation is performed by a low cost text to

speech synthesiser module and a small onboard loudspeaker. The audio is also available via a

blue-tooth transmitter, in order that it can be accessed remotely. Video of this is available on the

author’s YouTube channel at https://youtu.be/sCd1GNJe6Jw .

4.4 Experimental Methods

An experiment was conducted over three days in December 2016, at the At-Bristol Science

Learning Centre, Bristol, UK. This context was chosen because of available subjects in a

controlled setting. The robot operated on a large blue table as a special interactive exhibit within

the main exhibition area, see Figure 4-1. Visitors, both adults and children, were invited to stand

and observe the robot in operation for several minutes whilst the robot moved around the pen

and interacted with the researchers. Subjects were expected to watch the robot for at least three

minutes before being handed a paper questionnaire to gather both participant demographics

and information about the participants’ perceptions of the robot. During each day, the robot

operated for periods in each of two modes; silent (Group 1 results), or with muttering enabled

(Group 2 results). The R5 robot carries an on-board speaker to produce the ‘muttering’, see

Figure 2-1. Typically this is sufficiently loud to be heard in most indoor environments. However,

as the At-Bristol environment was particularly noisy with children playing, participants were

encouraged to wear headphones to better hear the audio output.

4.4.1 Post-Treatment Questionnaire

Table 4.2 summarises the questions asked after the participant had observed the robot in

operation. In order to facilitate cross-study comparison, the questions match those presented in

previous studies that investigate the use of real-time visual displays to provide transparency, see

Chapter 3. These questions are designed to measure various factors: the measure of intelligence
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Figure 4-1: Arrangement of the Muttering Robot experiment at At-Bristol. The obstacles are
made from giant lego bricks. Observers are wearing headphones fed from a standard headphone
amplifier, which in turn is connected to a bluetooth receiver. This receives the audio output from
the robot’s bluetooth transmitter. This enables participants to hear the robot clearly with high
levels of background noise.

perceived by the participants (Intel), the emotional response to the robot (Emo), and—most

importantly—the accuracy of the participants’ mental model of the robot (MM). For analysis,

the four free text responses were rated for accuracy with the robot’s actual Drives & behaviours

and given a score per question of 0 (inaccurate or no response), 1 (partially accurate) or 2

(accurate). The marking was carried out by a single coder for consistency, without access

to knowledge of which group the subject was in. No special vocabulary was expected. The

questions used in the questionnaire are deliberately very general, so as not to steer the subject.

Similarly, the marking scheme used is deliberately coarse grained because we are looking for a

significant effect at the general level of understanding, not for a nuanced improvement in the

subject’s model.

4.4.2 Affect Questions

The questionnaire includes a question concerning how participants feel about the robot, specif-

ically they are asked to complete a multiple choice section headed ‘How do you feel about

the robot? Please choose one option from each row.’ with five options ranging from ‘Not at

all’ through to ‘Very’, as suggested by Dörnyei and Taguchi (2009). A standard two dimen-
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Table 4.2: Post-Treatment Questions
Question Response Category

Is robot thinking? Y/N Intel
Is robot intelligent? 1-5 Intel
Feeling about robot? Multi choice Emo
Understand objective? Y/N MM
Describe robot task? Free text MM
Why does robot stop? Free text MM
Why do lights flash? Free text MM
What is person doing? Free text MM
Happy to be person? Y/N Emo
Want robot in home? Y/N Emo

Table 4.3: Affect Questions and assignment to Valence and Arousal. Participants were asked
‘How do you feel about the robot? Please choose one option from each row.’. Options were Not
at all (0), A Little (1), Somewhat (2), Quite a lot (3), Very (4).

Feeling f Valence Wv f Arousal Wa f

Happy +1.00 +0.51
Sad -1.00 -0.46
Scared -0.65 +0.65
Angry -0.62 +0.79
Curious +0.35 +0.24
Excited +0.78 +1.00
Bored -0.59 -1.00
Anxious -0.03 +0.69
No Feeling 0 0

sional model of affect is used, with dimensions of Valence and Arousal. The specific feelings

interrogated are detailed in Table 4.3 together with their assignment to an assumed underlying

level of Valence Wv f and Arousal Wa f . These terms were chosen based on common models of

emotion, and considered relevant to observation of a non-humanoid robot. The Valence and

Arousal weights are based on values specified for these specific words by Bradley and Lang

(1999) scaled within the range -1 to +1 on both axes.

VF(p) =
1
|F |∑F

Wv fVp f (4.2)

AF(p) =
1
|F |∑F

Wa f Ap f (4.3)

These Valence and Arousal weightings are also shown graphically in Figure 4-2. The Valence
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Figure 4-2: Diagram plotting the Valence and Arousal weightings for the feelings specified
in the questionnaire (see Table 4.3) showing a simple two dimensional model of Affect. The
Valence and Arousal weights are based on values specified for these specific words by Bradley
and Lang (1999) scaled within the range -1 to +1 on both axes.
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value VF(p) and Arousal value AF(p) for each participant p are therefore calculated by multi-

plying the scores for each feeling word Vs f and As f by the weightings Wv f and Wa f respectively,

and then summing for each feeling f in the set of feelings F , as shown in Equations 4.2 and 4.3.

‘No Feeling’ is excluded, resulting in |F |= 8.

4.5 Results

For each group of participants, the demographics are shown in Table 4.4. Given the public

engagement nature of the experimental location, it was not possible to accurately match each

group for age, gender, education and experience with computers and robots. However, mean

age and gender are both fairly well matched. The mix of graduates to non-graduates is also

well matched. Group Two contains proportionately more participants identifying themselves as

having prior experience of working with robots.

Table 4.4: Demographics of Participant Groups (N = 68)

Demographic Group One Group Two
(silent) (sound)

Total Participants 32 36
Mean Age (yrs) 44.1 47.36
Gender Male 14 17
Gender Female 18 19

STEM Degree 6 11
Other Degree 18 16

Ever worked with a robot? 2 10
Do you use computers? 23 30
Are you a Programmer? 7 10

4.5.1 Main Findings

The primary results are shown in Table 4.5. Most importantly, in Group Two (observe robot

whilst listening to muttering) there is a marked improvement in the accuracy of participants’

reports about the robot’s function and capability. This confirms a significant correlation between

the accuracy of the participants’ mental models of the robot, and the provision of the additional

transparency data provided by the muttering (N=68, unpaired t test, p=0.0057, t(66)=2.86). This

compares favourably with the results obtained using the ABOD3 real-time display (Wortham,

Theodorou and Bryson, 2017) described in Chapter 3.
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Table 4.5: Main Results. Bold face indicates results significant to at least p = .05.

Result Group One Group Two Effect Size
(silent) (sound) Cohen’s D

Is thinking (0/1) 0.50 (sd=0.51) 0.44 (sd=0.50) .085
Intelligence (1-5) 2.56 (sd=1.32) 2.67 (sd=1.10) .086
Objective (0/1) 0.78 (sd=0.42) 0.81 (sd=0.40) -.184
Accuracy (0-8) 1.94 (sd=1.39) 3.19 (sd=2.11) .696

In both groups, participants almost equally report that they understand the objective of the robot,

showing no difference across the groups (N=68, unpaired t test, p=0.81, t(66)=0.24). Note

the high level of reported understanding compared with the much lower report accuracy. This

indicates that significant numbers of participants in both groups perceive that they have a good

model of the robot, when in reality they do not. Finally, there is no significant difference in

participants perceived intelligence of the robot, or their reports that the robot is ‘thinking’.

4.5.2 Affect — Self Report of Feelings

The results obtained from the affect questions detailed in Table 4.3 did not yield significant

differences between Groups One and Two, however the findings shown in Table 4.6 do bear

some analysis. Firstly, no severe or adverse changes in feeling were found as a result of adding

Table 4.6: Results Based on Reported Feelings.

Result Group One Group Two Change Sig.
(silent) (sound)

Valence 0.383 (sd=0.354) 0.437 (sd=0.253) % 12.4 p=0.47
Arousal 0.350 (sd=0.291) 0.346 (sd=0.231) % -1.27 p=0.95

muttering to the robot, and this in itself is an important result if muttering is to be considered

for practical applications. Valence is a measure of the extent of positive feelings about the robot,

whilst Arousal is a measure of strength of feeling. Thus this result gives a tentative indication

that whilst participants did not have overall stronger feelings about the robot, their feelings were

marginally more positive. However, a larger study would be necessary to obtain evidence.
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4.6 Discussion

This approach of vocalising transparency through muttering may have applications where users

are visually impaired, or may need to concentrate their vision elsewhere whilst working with

an autonomous system. Applications may include divers working underwater with robots, as

commercial divers have good audio systems for communication, but work in environments

where visibility may be very poor.

Vocalisation has both advantages and drawbacks when compared with the use of a visual display.

Where robots are operating with very large hierarchical reactive plans, or where another action

selection method is being used, it is hard to decouple the design and operation of a real-time

visual display from the plan itself. If the display is to be mounted on the robot this also impacts

the design of robot. For hierarchical plans, the visual display needs to either only display the

highest level elements of the plan, or must move and scale to move around the plan as the

focus of execution changes. For designers this can be undertaken manually, but for end users or

observers of a robot manual interaction is impractical, and so some automated pan and zoom

mechanisms would be required.

In contrast, a vocalised transparency output has the benefit that it is independent of the physical

layout and structure of the plan and it scales indefinitely with the size of the plan. A vocalised

transparency feed could likely be configured to work with any structured action selection mech-

anism, not necessarily a hierarchical structure. Conversely, due to the much lower bandwidth of

a vocalised output, much of the fine detail of plan execution is lost. Also, if a plan is suspended

in a debugging mode, the vocalised output would cease, but a visual display would continue

to display a useful trace of activity to assist with debugging. The Speak Rules described in

subsection 4.3.2 must also be tuned manually, and may vary by robot and application, although

this has yet to be investigated.

The study’s authors had expected that participants might find the muttering robot to be somewhat

irritating (Wortham and Rogers, 2017). It is therefore very interesting that this was not borne out

in the data, in fact if anything there is a marginal improvement in the attitude of participants to

the robot. In practical applications we envisage the muttering to be able to be turned on and off

by users at will, possibly using a voice activated interface. Perhaps asking the robot to explain

itself would turn on the muttering, and telling it to ‘shut up’ would restore silence.

The results provide evidence to support the case that we can add the transparency measure

(muttering) without affecting the user experience. The user has substantially the same qualitative

experience, measured by the first three results in Table 4.5 and by the emotional model measures

in Table 4.6, but in fact has a better internal model to understand the robot. This is very
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important for social robotics applications as it counters the argument that making the robot

transparent might reduce its effectiveness, for example in companionship or human care related

applications (Wortham and Theodorou, 2017; Prescott, 2017).

Having discussed some advantages and disadvantages of visual and vocalised transparency,

it seems they are complementary and reinforcing. Developers might switch back and forth

between both mechanisms, or use them in parallel. It is certainly easier to observe a robot whilst

listening to it, than to observe a robot and a remote visual display concurrently. End users might

have the option to see a visual display on their tablet or laptop, but when this is inconvenient

they could enable the muttering, and then eventually turn off all transparency once they have a

good working model of the robot, enabling them to understand and predict its behaviour without

further recourse to the transparency mechanisms.

4.7 Conclusions and Further Work

As in the previous studies of Chapter 3, these results also indicate that significant numbers of

participants in both groups perceive that they have a good model of the robot, when in reality

they do not. This leads us to conclude that reports of understanding by those interacting with

robots should be treated with healthy scepticism. However, in this study we show that the

vocalised transparency feed produces a marked improvement in the accuracy of participants’

reports about the robot’s function and capability, confirming a significant correlation between

the accuracy of the participants’ mental models of the robot, and the provision of the additional

transparency data provided by the muttering.

This study indicates the possibility that participants feel more positive about the robot when it

is muttering, but with the limited study size these results are not statistically significant, and

in comparison with the much stronger effect of the transparency on accuracy of mental model,

this emotional effect appears weak or non existent. Indeed, there was almost no difference

in the levels of Arousal between the two groups, which in itself is an interesting result as we

had expected to see some increase due to the increased stimulation of participants by the vocal

output from the robot. Further, larger studies would therefore be required to explore whether

muttering produces positive feelings toward the robot. Nevertheless, since our primary intent is

to improve transparency without incurring negative effects, this is an encouraging result.

In this experiment, as with the experiments considering a visual real-time display, we have

concentrated on the output of the decision making process. We have therefore not considered

making available the sensory model that exists within the robot, nor making transparent the

various thresholds that must be crossed to release the various elements of the reactive plan.
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Perhaps to do so would overload the user with data, but in some applications it may be helpful to

gain an insight about how the world is perceived by the robot, as this would aid an understanding

of its subsequent decision making processes. It might also be useful to investigate the benefits

of a more complex sentence generation algorithm, able to generate varying sentences that might

make the vocalisation sound less ‘robotic’.

Finally, we have yet to expose participants to the simultaneous use of visual and vocalised

transparency. This is investigated in the following chapter, along with the effect of varying robot

appearance.
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Chapter 5

The Effects of Appearance on
Transparency

“The work of science is to substitute facts for appearances, and demonstrations for
impressions.”

— John Ruskin, Stones of Venice

5.1 Summary

In this chapter we use Amazon Mechanical Turk to conduct an online experiment with the R5

robot. This study is intended to extend and further explore the findings of Chapters 3 and 4, and

also to investigate how altering the appearance of a robot impacts observers’ mental models,

both with and without visual and vocalised transparency measures. The R5 robot is embellished

with a simple bee-like cover to create a more zoomorphic form, which we name ‘Buddy the

Robot’. We create eight robot encounter videos, encompassing all combinations of visual and

vocal transparency, with both the mechanomorphic R5 robot and the zoomorphic Buddy robot.

The results confirm that naive participants indeed form significantly better models of a robot

when accompanied by either a visual, or a vocalised representation of the internal state and

processing of the robot. We find that the zoomorphic form without additional transparency

results in significantly more accurate models, and hypothesise that this is due to the increased

likeability of the zoomorphic form, leading to increased participant attention and therefore

improved perception of the machine agency. However, in the presence of additional transparency

measures, altering robot morphology has a reduced effect on mental model accuracy. We also

observe that a vocalising, or ‘talking’ robot greatly increases the confidence of naive observers
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to report that they understand a robot’s behaviour seen on video, irrespective of their actual

mental model accuracy. In all our studies, we find an upper bound to the improvement in mental

model accuracy that can be achieved through transparency, and suggest that the remaining gap

can only be closed through other means, such as human explanation or written documentation.

Finally, we conclude that the trivial embellishment of a robot to alter its form has significant

effects on our understanding and attitude towards it.

5.2 Introduction

In the previous chapters, we have investigated and considered the impact of a visual display and

vocalised representation of the internal processing and state of the robot on the mental models

that humans create during robot encounter. We use the shorthand ’transparency mechanism’ to

refer to these two approaches. There may well be alternative, indeed improved, mechanisms to

convey the processing and internal state of a robot. This, of course, is a matter for the robot

designer when considering the intended purpose of the robot, the operating environment(s), and

the capabilities of the humans likely to encounter it.

During robot design, it is also important to consider the physical appearance of a robot, and

the ways in which appearance might be altered to better make the robot transparent, in terms

of its purpose, capabilities and goals. In this chapter, we investigate a small sub-space of

non-humanoid robot design, to investigate whether the behaviour of a robot firmly anchors

the corresponding mental models created by human subjects, or whether these models can be

significantly altered by making what we might consider to be trivial changes to robot appearance.

Does robot embellishment significantly alter transparency? Further, once a baseline mental

model is established for a given morphology and embellishment, do transparency mechanisms

then vary in their effectiveness?

In this chapter we use Amazon’s Mechanical Turk (Amazon, 2017) to repeat our previous

experiments in an online environment with a larger sample size, and also to extend the ex-

perimental scope to investigate the effect of varying the appearance of the R5 robot between

mechanomorphic and zoomorphic forms. We introduce the concept of Mental Model Accuracy

(MMA), and in these experiments define it to be equivalent to the Report Accuracy measured in

the previous experiments of Chapters 3 and 4.
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5.3 Background

There is a great deal of literature concerning the effect of altering the visual appearance of

humanoid, or anthropomorphic, robots (Robins et al., 2004, 2005; Dautenhahn, 2007) and

particularly humanoid robot faces (DiSalvo et al., 2002; Goetz, Kiesler and Powers, 2003;

Broadbent et al., 2013). Less work has been done to study these effects in non-humanoid,

mechanomorphic and particularly zoomorphic robots. For humanoid robots, appearance or

demeanour has been shown to systematically influence human perception of a robot. It also

affects willingness to comply with a robot’s instructions. These perceptions and responses may

be driven by social cues embodied in the robot. In passing, it’s worth noting that Goetz, Kiesler

and Powers (2003) found more human-like, attractive, or playful robots more compelling but not

across the board. Instead, users expected the robot to look and act appropriately, given the task

context. This gives us an initial hint that our interactions with robots, like our human-human

interactions, are most comfortable when our expectations, or stereotypic models, are fulfilled

without much need for ‘on-the-fly’ alteration.

In a companion robot study investigating varying a basic robot appearance between mechanomor-

phic and anthropomorphic modes Walters et al. (2008) finds that overall, participants tend to

prefer robots with more human-like appearance and attributes. However, introverts and par-

ticipants with lower emotional stability tend to prefer the mechanoid appearance to a greater

degree than other participants. This study also found that differences in robot appearance

lead to marked differences in perceived robot personality. Personality is a key determinant

in human social interactions. Consequently, personality is also a key factor in human-robot

interaction (Tapus and Mataric, 2008). For example, Tapus and Mataric observe that people

enjoy interacting with humorous robots but pay more attention to more serious ones.

In a broad survey of socially interactive robots, Fong, Nourbakhsh and Dautenhahn (2003)

observe that the form and structure of a robot is important because it helps establish social

expectations. Physical appearance biases interaction. A robot resembling a dog will (at least

initially) be treated differently from one which is anthropomorphic. Fong, Nourbakhsh and

Dautenhahn make the important point that the relative familiarity of a robot’s morphology

can have a profound effect on its accessibility, desirability, and expressiveness. Walters et al.

(2009) provide a range of examples here. In experiments with very similar chest and knee high

robots, equipped with either video cameras or simple humanoid faces, Walters et al. finds that

the more anthropomorphic robot versions tend to be perceived as more intelligent than their

mechanomorphic cousins. However, when combined with short height, the anthropomorphic

robots are seen as less conscientious and more neurotic. Also, the taller robots were perceived

as more human-like and conscientious than the short robots.
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In an extensive study of child perspectives of robot appearance, Woods (2006) finds that children

clearly distinguished robots in terms of their perceived intentions, capability to understand,

and emotional expression, based solely on morphology. Woods concludes that the overall

appearance of robots influences the expectations that humans might have when interacting

with a robot. For example, an anthropomorphic robot may be expected to possess language

capabilities and demonstrate particular ‘personality’ characteristics, whereas a mechanomorphic

robot would not be expected to have any ability to speak.

Linville, Fischer and Salovey (1989) investigate the perceived distributions of the characteristics

of in-group and out-group members of human groups. Their research shows that people have

a sparse, simple mental model of those with whom they have little direct experience, and that

these models assume narrow variability of characteristics within group. With experience, a

person’s mental models become richer and more complex, and allow for greater variability.

Kiesler and Goetz (2002) tentatively extend this argument to human-robot groups. It may be

that a given robot morphology implies a specific sparse model, and that during initial naive

encounters, variations beyond the stereotypic model are unexpected.

DiSalvo and Gemperle (2003) neatly recap five common theories of anthropomorphism. Of

particular interest is what they term the ‘Social Thesis’. By this theory, the act of anthropo-

morphizing “reflects values and possesses the potential for social consequence”. Attributing

human characteristics to animals, for example, provides a means to change the values we place

on them, and alters the way in which be behave towards them (Caporeal and Heyes, 1997).

When mechanomorphic, non-humanoid robots are encountered, the almost exclusive prevalence

of anthropomorphic humanoid robots in science fiction, and more generally in the media may,

by breaking this convention, cause confusion about the robot’s purpose and function. The

anthropomorphic form maintains the shape convention that defines ‘robot’ in the minds of many.

DiSalvo and Gemperle point out that this argument raises an ethical as well as a usability issue.

If robot form can be used to project human values, it becomes important to reflect on what those

values are. Notably, they go on to say that “... creating a servant class of humanoid robots would

necessarily reference a history of human exploitation. The ethical and social implications of

such references cannot be ignored in the research and design of new products.” One such ethical

concern is the Halo effect (Nisbett and Wilson, 1977) — the human tendency to use known

attributes to make assumptions about unknown ones. It is certainly the case with humans that

liking of appearance increases liking of other personality traits, and this effect is similarly seen

in robot experiments (Syrdal et al., 2007; Walters et al., 2008).

Zoomorphic, or animal-like, robots provide us with another useful design form (Fong, Nour-

bakhsh and Dautenhahn, 2003; Klamer and Ben Allouch, 2010; Bae and Kim, 2011) having

the benefits of an appealing animate appearance but without the problems associated with the
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‘Uncanny Valley’ — the well known term used to describe feelings of revulsion or ‘creepiness’

(McAndrew and Koehnke, 2016) in the presence of robots that are almost, but not perfectly

human-like (Valley, Mori and Minato, 1970; Gee, Browne and Kawamura, 2005). Avoiding the

uncanny valley may be easier with a zoomorphic design because human-creature relationships

(for example owner-pet) are often simpler than human-human relationships. Thus, our expec-

tations of what constitutes ‘realistic’ and ‘unrealistic’ animal morphology tends to be lower

(Fong, Nourbakhsh and Dautenhahn, 2003).

In a cross-cultural study, Li, Rau and Li (2010) find strong and positive correlations between

interaction performance and preference in terms of likeability, trust and satisfaction. Their study

used three small Lego robots, one anthropomorphic, one mechanomorphic and one zoomorphic

— achieved by covering the robot in the ‘skin’ of a soft toy rabbit. The study found that the

robot with the mechanomorphic appearance received the lowest likeability score, reinforcing

the earlier work of Syrdal et al. (2007). This earlier study investigates the impact of robot

appearance at ‘zero acquaintance’, and finds that as we do for human encounters, we make

significant inferences about robot personality solely based on appearance. Li, Rau and Li (2010)

suggest that zoomorphic robots are more suitable for social interaction with humans, following

the work of Lohse, Hegel and Wrede (2008). This earlier study used an online approach to study

the effect of appearance on attribution of capability and function, and found that appearance

plays a crucial role in the perception of a robot and determines which applications are proposed

for it.

Malle et al. (2016) conclude that robot appearance affects people’s moral judgements about

robots. Using a simple scripted ’trolley problem’ dilemma and sketched pictures, they show that

patterns of blame for a humanoid robot is very similar to those for a human, however they differ

significantly for a non-humanoid robot. The inaction of a non-humanoid ‘mechanical’ robot

was considered more blameworthy than its action, whilst for both the humanoid robot and a

human, the converse is true. It is interesting to note that for a disembodied hypothetical artificial

intelligence, or ‘AI’, this asymmetry matched that of the humanoid robot and the human. Finally

in both trolley problems scenarios explored by Malle et al., the absolute level of blame attributed

to a human for taking an action was always the highest, but in the case of inaction it was either

the lowest or equally as low as that attributed to the other agent types.

The presence of emotional stimuli has been shown to bias our social judgement in human-human

interaction (Fiori and Shuman, 2017). In addition, this bias is mediated by individual variations

in our attentional processes. This variation might account for the wide variety of responses to

the R5 robot across all of our experiments.

Our cultural background also alters the attention we give to others during passive encounter
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scenarios. Hall (1989) identifies and categorises cultures as either high-context or low-context.

An individual in a low-context culture requires explicit information to be provided during an

interaction. Conversely in a high-context culture, much more information is assumed to be

contextually available. Germany is an example of a low-context culture, whereas Japan is a

high-context culture. Li, Rau and Li (2010) suggest that in their human robot interaction experi-

ments, participants from low-context cultures may have significantly decreased engagement (or

attention) when the sociability of a task is lowered. In this study sociability is defined in terms

of interaction time and frequency of interaction. Tapus and Mataric (2008) investigate ‘user

personality matching’ using an autonomous robot for rehabilitation therapy of stroke patients.

They use a non-humanoid, small wheeled mobile robot. It is obvious that personality is a key

determinant in human social interactions, and their results indicate that human personality is

also a key factor in the perception of a robot in human-robot interactions. Thus we observe that

for a given robot morphology in a given scenario, we can expect a range of reactions based on

culture and individual personality. Scholl and Gao (2013) argue that the perception of animacy

and intentionality occurs within our visual processing mechanisms, and does not arise post

facto, as a result of higher level cognitive judgement. We ‘see’ (or detect) intention using the

same neural equipment that we use to see movement, colour and form. Ling (2012) shows that

attention alters appearance; it boosts the apparent stimulus contrast. This result is consistent

with neuro-physiological findings suggesting that attention modifies the strength of a stimulus

by increasing its ‘effective contrast’ or salience. Therefore it may be that when more attention

is paid to a robot, its detailed features and movements become more salient, leading to a richer

internal model of functionality and purpose.

Taking these previous studies together, we suggest the following causal chain: Appearance

affects attention, which in turn affects perception, modifying our initial, sparse stereotypic

internal mental model to a greater or lesser extent. All these effects are modulated by culture,

our library of pre-existing stereotypic models of robots, individual human personality, our

emotional state, and the context in which we find the robot. Therefore it is unsurprising that in

previous experiments we observed wide variance in the results.

This section has concentrated on the effect of robot appearance on the human understanding

of robots. The human predisposition to anthropomorphise is a much wider field. Historically,

simple accounts were given for anthropomorphism, known widely as the ‘comfort’ and ‘famil-

iarity’ theses. These basic ideas rest upon the assumption that humans seek the easiest and

most familiar models to understand the world around them, and that for hyper-social humans

those are models of conspecifics, i.e. models of human characteristics in terms of behaviour and

cognition (Guthrie, 1997; Dunbar, 1998). Latterly, more complex theories have been proposed.

Whether anthropomorphism is a ‘cognitive default’, a ‘consequence of overlapping interspecies
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coordination systems’, or indeed a ‘species-specific group-level coordination system’ as sug-

gested by Caporeal and Heyes (1997) is beyond the scope of this practical investigation of

transparency. For further reading we suggest DiSalvo and Gemperle (2003) together with the

excellent collection of papers edited by Mitchell, Thompson and Miles (1997).

5.4 Experimental Methods

In these experiments, we again use the R5 robot described in previous chapters. Firstly, we

investigate whether the addition of a crude insect-like (bee-like) cover for the robot increases

anthropomorphism, and whether this then subsequently improves the accuracy of the mind

model generated by subjects. Secondly, we investigate whether the transparency of such a robot

is improved by adding either the ABOD3 visual display or vocalised representation (muttering)

of the internal processing and state of the robot. In the previous experiments of Chapters 3

and 4, we measure the accuracy the participants’ mental models of the robot by asking a set of

questions and scoring their results to arrive at a ’Report Accuracy’ value for each participant.

This score then used to make quantitative assessments of the mental model accuracy of the

participant. In this chapter, we define Mental Model Accuracy (MMA) to be equivalent to the

Report Accuracy of Chapters 3 and 4. MMA is calculated as the sum of the report scores, 0-8

as in previous chapters, but also expressed as a percentage, as one might do with exam scores.

5.4.1 Amazon Mechanical Turk

Amazon’s Mechanical Turk (Amazon, 2017) has its pitfalls, not least the wide diversity of

cultural background of participants, and the inability to match demographics accurately across

differing treatments. However, it has several benefits over convenience samples taken from

university students, or from the general public in live public engagement environments (Crump,

McDonnell and Gureckis, 2013; Berinsky, Huber and Lenz, 2012; Benoit et al., 2016). It has

also been used successfully in previous robot related studies (Malle et al., 2016). Firstly, since

the treatment must necessarily use pre-recorded materials, we can be sure that each participant

is exposed to identical, or at least very similar treatments. Secondly, the monitoring within

Mechanical Turk enables us to be relatively certain that participants watched entire videos

and considered questions carefully. Thirdly, unlike local convenience samples, we are able to

obtain a larger cross section of the public than is possible within a campus, or even a science

learning centre environment. Finally, and perhaps most importantly, we are able to access much

larger numbers of participants. This is perhaps the most important point for our purposes, since

experimental noise in terms of culture, false reporting and demographic imbalance should apply
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equally to all treatment batches, and if we make the batches large, the central limit theorem gives

us increasing confidence that our results will nevertheless be representative of the population as

a whole. In addition, a significant result across a diverse population sample provides a robust

result about humans in general, rather than one geographic, ethnic or socio-economic group in

particular.

5.4.2 Buddy the Robot

In order to investigate the effect of appearance, we created ‘Buddy the Robot’, shown in Figure 5-

1. The hardware, programming—including the reactive plan and subsequent behaviour of Buddy

is identical to R5. The only exceptions being that Buddy announces itself when it is first

switched-on, saying “Hello, I am Buddy the robot. Nice to meet you.” whereas R5 says “Hello,

this is the R5 robot.” Also, Buddy uses its name when muttering, for example “Buddy is trying

to sleep” rather than R5’s version “R5 is trying to sleep”. Buddy differs in appearance from

R5, in that it has been made more zoomorphic by the addition of a bee-like striped cover and

‘googly eyes’. The cover is held in place by two wire straps at the front, allowing the rear of the

cover to be lifted to access the robot on-off switch. The eye stalks are somewhat flexible and

springy, such that as the robot moves they vibrate, mechanically activating the ‘googly eyes’.

5.4.3 Robot Videos

The R5 robot and its embellished zoomorphic form ‘Buddy the Robot’ were video recorded

whilst operating within a ‘pen’ constructed using wire fencing intended for pet hamsters. The

pen contained a number of objects including a bucket, various boxes and a soft toy, as shown in

Figure 5-2. During each video recording the transparency feed from each robot was transmitted

to a remote PC using the robot’s wireless (WiFi) link and captured for subsequent use with

the ABOD3 real-time debugging tool (Theodorou, Wortham and Bryson, 2017). In both

videos, the robot muttering was enabled and captured using the video camera’s single monaural

microphone. Repeated videos were taken in both scenarios to achieve similar robot behaviours

and interactions with a researcher, who appears briefly in each video to enable the robot to

‘detect’ them. The videos were then trimmed to the same length of 3 minutes 46 seconds. Two

further silent videos where then created by removing the soundtracks using the blender video

editing tool 1.

The ABOD3 tool introduced in Subsection 3.3.3 was then used to create four more videos, each

showing one of the four R5/Buddy Silent/Muttering robot videos, but also showing a real-time

1The blender video editing tool, see https://www.blender.org
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Figure 5-1: Buddy the Robot. This close-up shot reveals that ‘Buddy’ is simply the R5 robot
(shown in Figure 2-1) with the addition of a bee-like cover. The cover is constructed from part
of a child’s novelty rucksack, with the added embellishment of ‘googly eyes’. The programming
and behaviour of Buddy is identical to R5, with the exception that it announces itself as “Buddy
the robot” at switch-on, and calls itself “Buddy” when muttering.
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Figure 5-2: Buddy the Robot situated within the pen used for all videos used in the Mechanical
Turk experiments.
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display of the high level plan execution. Two of these ABOD3 videos therefore have no sound,

and two have muttering. Figure 5-3 shows a single frame from one of the ABOD3 videos.

This creation process led to eight separate video recordings with all combinations of robot

Figure 5-3: Buddy the Robot detecting a human, shown within the ABOD3 graphical debugging
tool. The ‘DetectHuman’ Drive is shown highlighted indicating that it is active, and the video
shows the robot headlamp flashing green to indicate the successful detection of a human.

appearance, visual transparency display and vocalised transparency. The four ABOD3 videos

are about 10 seconds longer to allow for the video replay to be synchronised with the real-time

transparency data and the beginning of each video. These combinations and the treatment

video reference numbers are shown in Table 5.1. The reference number of each video was

Table 5.1: The Eight Videos Created for the Mechanical Turk Experiments

Presentation Robot Video Robot Video Shown in ABOD3 Shown in ABOD3
Type No Sound Muttering with No Sound Muttering

R5 Robot 1 3 5 7
Buddy Robot 2 4 6 8

subsequently used to track the questionnaires and the responses, and these references are also

used in the following sections.
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5.4.4 Online Questionnaire

As the previous online experiments of Chapters 3 and 4, we used Google Forms to create a post

treatment questionnaire2. Eight versions of this questionnaire were then generated to reference

each of the eight videos, and instructions within the questionnaire were tailored to advise

participants to use headphones or good quality speakers for those videos including sound. The

questionnaire itself was otherwise unchanged across the eight treatments. All participants were

requested to watch the video in its entirety, and to conduct the experiment on a laptop or desktop

computer with a large enough screen to see the video clearly. Also, each questionnaire contained

a large image of the robot arena with no robot present, see Figure 5-4, and participants were

requested not to take part in the experiment if they had already seen this image. This restriction

was included to avoid participants participating in more than one treatment. Mechanical Turk

includes the ability to access the ID (a unique anonymous identifier), of each participant, so that

we could check when this stipulation had been ignored, and remove the participants’ second

and subsequent entries from our data, although this only occurred a handful of times.

Figure 5-4: Empty arena image shown to participants to remind them if they have participated
in previous experiments. This was used at the beginning of our questionnaire and participants
were requested not to proceed if they had already seen this scene in previous experiments. This
approach proved very successful.

The Google Forms questionnaire contained the following sections:

2Google Forms, see https://docs.google.com/forms/
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1. Details of experiment, agreement to participate in experiment and agreement that data

may be used anonymously.

2. About you — Participant demographics identical to that used in Section 4.5.

3. The robot video — One of the eight treatment videos in Table 5.1.

4. About the robot — Identical questions to those that used in Section 4.4.1.

5. Impression of the robot — Standard ‘Godspeed’ questions with 5 point Likert scale

(Bartneck et al., 2009), see Section 5.4.5.

6. About the experiment — Feedback on problems encountered during the experiment,

suggestions for improvement or any other comments.

7. Complete Details — Request for Mechanical Turk Worker ID, and provision of a code

unique to each treatment to be inserted into the Mechanical Turk system by the participant.

An example of the full questionnaire, in printed form, is provided in Appendix E. When accessed

online, the questions are presented as separate pages, and each must be completed according

to the mandatory fields rules before the participant can continue to the next page. In printed

form these mandatory fields are shown with red asterisks (*). The Feedback section contains a

question asking about the participants’ ability to hear the robot. This provides us with a useful

‘Gold Standard’ question. If participants answer that they heard the robot clearly when the video

was silent, this is an indication that they may not have watched the video at all. Conversely, if

they answer that there was no sound when indeed there was, then again this indicates either a

faulty viewing, or failure to attempt to view.

5.4.5 Impression of the Robot — The ‘Godspeed’ Questions

The ‘Godspeed’ questions are based on Bartneck et al. (2009), with answers on a 5 point Likert

scale. The questions are arranged into five groups, giving overall scores for Anthropomorphism,

Animacy, Likeability, Perceived Intelligence and Safety. Three questions were removed from

the original Godspeed specification:

• Animacy: Stagnant/Lively — we do not consider stagnant to be a generally understood

antonym of lively.

• Animacy: Inert/Interactive — we do not consider inert to be a generally understood

antonym of interactive.
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• Likeability: Unkind/Kind — since there is no interaction in the videos relevant to this

quality, it was omitted.

The remaining 21 Godspeed questions are grouped as per Table 5.2 below.

Table 5.2: The Godspeed Questions, see Appendix E questions 18-38.

Group N Questions

Anthropomorphism 5 Fake/Natural, Machinelike/Humanlike,
Unconscious/Conscious, Artificial/Lifelike,
Rigid/Elegant.

Animacy 4 Dead/Alive, Mechanical/Organic,
Artificial/Lifelike, Apathetic/Responsive.

Likeability 4 Dislike/Like, Unfriendly/Friendly,
Unpleasant/Pleasant, Awful/Nice.

Perceived Intelligence 5 Incompetant/Competant, Ignorant/Knowledgeable,
Irresponsible/Responsible, Unintelligent/Intelligent,
Foolish/Sensible.

Safety 3 Anxious/Relaxed, Calm/Agitated, Quiescent/Surprised.

5.4.6 Work Batches in Mechanical Turk

Mechanical Turk uses the concept of work batches. A batch contains a simple web page

with a link to the Google form, together with parameters that define the requirements that the

participants must meet. Amazon calls the participants ‘Workers’, and they are also known

as ‘Turkers’. Using these parameters, we set up batches requesting 20 participants for each

treatment, and specified that participants must have a previous 99% satisfaction rating for

previous assignments. The first set of batches were executed, and after a preliminary examination

it was decided that this approach was delivering useful results and so each batch was then

repeated to generate 40 responses for each treatment. Responses were then evaluated to remove

duplicate participants in the data set. Respondents who failed to answer the ‘Gold Standard’

questions correctly or who completed the work far too quickly to have been able to watch the

video in its entirety were also removed. Amazon provide a facility to inform Workers that their

work is unacceptable, and this also generates a credit that can be used to request other Workers

to carry out the the remaining work.
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5.5 Results

5.5.1 Participant Demographics

The demographics for each participant group is shown in Table 5.3. Although it is not possible

Table 5.3: Demographics of Participant Groups (N = 317)

Group 1 2 3 4 5 6 7 8
Demographic

Total Participants 41 39 39 40 40 39 39 40
Mean Age (yrs) 32.4 30.2 33.1 34.5 33.3 33.1 34.9 35.8
Gender Male 29 30 27 23 25 27 25 20
Gender Female 12 9 12 17 15 12 14 20

STEM Degree 3 7 7 3 5 4 0 2
Other Degree 17 15 14 20 21 21 21 17
Degree Level Education 20 22 21 23 26 25 21 19

Ever worked with a robot? 4 7 6 8 6 7 7 9
Do you use computers? 37 36 38 35 38 36 38 37
Are you a Programmer? 14 12 13 11 16 11 14 10

to match groups accurately across treatments, the relatively large group size ensured comparable

samples in terms of age and education level. The overall sample is 65% male, 35% female

with 56% being educated to degree level. 32% say they write computer programs. Rather

strangely, whilst answering the questions on a computer, not all participants answered that they

use computers, Group 4 being the most extreme in this regard, with only 87.5% of participants

confirming that they use computers.

Mechanical Turk is a global system, but it is not possible to identify the location of Workers

from the batch log files produced by the system. However, based on anecdotal evidence from

email correspondence with participants during each work batch, together with the varying

English language skills apparent from the written answers, participants came from a variety of

countries including the UK, Europe, USA and India.

5.5.2 Main Results

The results for the eight treatments are summarised in Table 5.4. The effect of adding trans-

parency, and indeed of altering robot morphology, on Mental Model Accuracy (MMA) is best

illustrated using a bar chart, shown in Figure 5-5. There are several significant results here.
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Table 5.4: Main Results for the eight treatments outlined in Table 5.1 (N = 317)

Group 1 2 3 4 5 6 7 8
R5 | Buddy (B) R5 B R5 B R5 B R5 B
ABOD3 (A) | Muttering (M) M M A A A M A M

Is thinking (0/1) 0.56 0.69 0.46 0.55 0.53 0.56 0.49 0.50
Understand Objective (0/1) 0.37 0.56 0.92 0.85 0.65 0.56 0.92 0.93

Intelligence (1-5) ī 2.76 3.10 2.69 2.95 2.73 2.62 2.95 2.95
Standard Deviation σ 1.10 1.10 1.09 1.26 1.16 1.17 1.06 1.07

Mental Model Accuracy (0-8) m̄ 1.46 2.23 4.23 3.50 3.68 3.77 3.33 4.10
Mental Model Accuracy (%) 18.3 27.9 52.9 43.8 46.0 47.1 41.6 51.3
Standard Deviation σ 1.52 1.80 2.07 2.09 2.41 2.04 2.18 4.15

Firstly, between treatments 1 and 3; t(78)=6.85, p<0.0001, 2 and 4; t(77)=2.90, p=0.0050, 1 and

5; t(79)=4.97, p<0.0001, and 2 and 6; t(76)=3.54, p=0.0007, we see a repeat of the significant

effect that visual or vocalised transparency has on MMA. All results are calculated using the

unpaired t test. This confirms the findings reported in Chapters 3 and 4. The transparency of the

mechanomorphic and zoomorphic versions of the robot can be significantly improved by the

addition of a visual display or vocalised representation of the internal processing and state of

the robot.

Secondly, comparing treatments 1 and 2, we see a significant increase in MMA resulting from

addition of the bee-like cover to the robot; t(78)=2.07, p=0.042. This was unexpected, and is

discussed in more detail in the following section.

With additional transparency in place, the embellishment of the robot from mechanomorphic to

zoomorphic form made proportionately less difference to MMA. Between treatments 3 and 4,

the zoomorphic form may somewhat reduce transparency; t(77)=1.56, p=0.12, whereas between

treatments 5 and 6 the form made little difference; t(77)=0.179, p=0.86. However, these results

are not sufficiently statistically robust to be definitive.

Taking these results together, we can say that for the mechanomorphic R5 robot, the addition of

either visual or vocalised transparency has a greater improvement in MMA, than when either

are applied to the zoomorphic Buddy version. This is discussed in more detail in the following

section.

Looking at the effect of combining visual and vocalised transparency, we see no significant

result across robot morphologies. For the mechanomorphic R5 robot, we see a decrease in

MMA in treatment 7 over that of treatments 3; t(76)=1.87, p=0.065, and 5; t(77)=0.676, p=0.50.

Conversely, for the zoomorphic Buddy robot, we see an increase in MMA in treatment 8 over

98



0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

1
 R5 Silent

2
Buddy
Silent

3
R5

Muttering

4
Buddy

Muttering

5
R5 ABOD3

Silent

6
Buddy
ABOD3
Silent

7
R5

Muttering
ABOD3

8
Buddy

Muttering
ABOD3

Figure 5-5: Mental Model Accuracy score (0-8) for the eight treatments. Robot uncovered (R5)
or with Bee cover (Buddy), Transparency provided through Muttering and ABOD3. Error bars
show 95% confidence interval (N = 317).

that of treatments 4; t(78)=0.817, p=0.42, and 6; t(77)=0.447, p=0.66. Again, these tentative

results are discussed further in the following section.

5.5.3 Failure to Identify ‘Sleeping’

The robot has a ‘Sleep’ drive with a ramping priority, see Section 3.3.2. As the drive priority

increases, it eventually becomes the highest priority and the robot will ‘sleep’ for 10 seconds,

during which time the robot stops moving, and stops monitoring its environment, causing the

corner LEDs to stop flashing. However, this behaviour is only released when the robot is close

to an object. In the post treatment questionnaire, question 13 asks “Why does [the robot] just

stop every so often (when it stops moving completely)?”. In the previous online experiment,

described in Chapter 3, answers to a similar question were removed from the analysis, due to

a potential misunderstanding as to the meaning of the question. However, the question was

subsequently clarified with the addition of the words in parentheses, and used in the experiment

described in Chapter 4. Table 5.5 shows the results for question 13 for the eight treatments
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Table 5.5: Scores for Question 13 — “Why does [the robot] just stop every so often (when it
stops moving completely)?”

Group 1 2 3 4 5 6 7 8
R5 | Buddy (B) R5 B R5 B R5 B R5 B
ABOD3 (A) | Muttering (M) M M A A A M A M

Score=1 0 1 1 0 1 1 1 0
Score=2 0 0 8 5 11 6 5 7

Total Scoring > 0 0 1 9 5 12 7 6 7
% Scoring > 0 0 2.6 23.1 12.5 30 17.9 15.4 17.5

defined in Table 5.1. The answers to this question are particularly revealing, because with no

additional visual or vocalised transparency (treatments 1 and 2), all but one participant scored

zero, indicating that this question cannot be answered solely by observing the robots’ behaviour.

Example answers for treatments (T) 1 and 2 include:

• T1 — “It was on deep thinking.”

• T1 — “i think its computing things.”

• T1 — “I think it stops to analyze the image that it is seeing.”

• T1 — “No idea”

• T1 — “The person controlling it commanded it to stop”

• T2 — “it is thinking”

• T2 — “i think it’s tired” — Participant Score 1

• T2 — “To analyze the toy in front of it.”

• T2 — “Because it needs to process information”

• T2 — “It’s trying to process the information it’s collected.”

The highest score for this question resulted from treatment 5 (mechanomorphic R5 robot with

ABOD3 display, no muttering), with 30% achieving partially or fully correct answers. Some

example answers are provided below:

• T5 — ‘It enters a sleep cycle for some reason’ — Participant Score 2

• T5 — ‘It sleeps.’ — Participant Score 2

• T5 — ‘it went to sleep’ — Participant Score 2
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• T5 — ‘It’s probably trying to load the next task or command or it’s processing.’

• T5 — ‘It is programmed to do that.’ — Participant Score 1

The highest score involving muttering occurs with treatment 3. It is worth noting that even

with the vocaliser announcing that the robot is “trying to sleep” and has “completed sleep ten

seconds”, only 23.1% of participants were able to partly or fully answer this question. These

results are discussed further in Section 5.6 below.

5.5.4 Participant Confidence

In the experiments described in Chapters 3 and 4, the presence of visual or vocal transparency

had no significant effect on participants’ self report that they understood the objectives of the

robot, measured by their Yes/No response to the question “Can you tell what the robot is trying

to do?”. However, in this experiment, there was a wide variation across the eight treatments.

The proportion answering Yes to this question is shown in Figure 5-6. This chart also shows the
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corresponding MMA scores for each treatment. The immediate and most striking observation

is the impact that Muttering has on confidence. In all cases vocalised transparency increased

confidence levels to at least 85% and in three of the four cases to over 90%. Conversely, when

the robot was not muttering confidence levels ranged from 37% to 65%. We must be careful not

to compare these values directly with the MMA scores, since one is a measure of the proportion

of a population giving a specific answer to a Yes/No question, whereas the MMA scores are a

mean across the population. However, looking at treatments 5-8 we see only a small variation in

actual MMA, but a large increase in confidence related to muttering.

5.5.5 Affect — Self Report of Feelings

The analysis of participants self report of feelings about the robot, described in Sections 4.4.2

and 4.5.2, are repeated across the eight treatments in this experiment, yielding valence and

arousal results for each participant. For completeness, these are plotted in Figure 5-7.
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Figure 5-7: Plot of valence and arousal for the eight treatments (N=317). Linear trendlines for
each treatment are also shown.
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Unfortunately this plot reveals little, other than a universal positive correlation between valence

and arousal. To extract more meaningful results, Table 5.6 provides a summary of results for

each experiment. This data is presented graphically in Figure 5-8, showing the mean valence

and arousal for each treatment.

Table 5.6: Affect Results for the eight treatments outlined in Table 5.1 (N = 317)

Group 1 2 3 4 5 6 7 8
R5 | (B)uddy R5 B R5 B R5 B R5 B
(A)BOD3 | (M)uttering M M A A A M A M

Mean Valence v̄ 0.194 0.235 0.266 0.250 0.307 0.286 0.126 0.341
Standard Deviation σ 0.306 0.402 0.346 0.409 0.361 0.338 0.336 0.382

Mean Arousal ā 0.232 0.277 0.282 0.390 0.278 0.259 0.277 0.319
Standard Deviation σ 0.309 0.354 0.347 0.362 0.383 0.384 0.345 0.369

The relative area of each ‘bubble’ is determined by the sum of the variances of arousal and

valence, and has been shown to indicate a measure of ‘spread’ for each treatment. From

Table 5.6 taken together with this summary plot, we see a similar spread of distribution for each

treatment. Also, the mean arousal varies little across all the treatments, although comparing 1

and 2, 3 and 4, and 7 and 8, it is generally marginally higher for the zoomorphic Buddy robot.

The highest arousal is achieved with the vocalising zoomorphic Buddy robot, shown without

the ABOD3 tool (treatment 4). Comparing this with the silent version of the video (treatment

2), mean arousal increases from 0.277 to 0.390, however this is not a significant difference due

to the relatively large variance in all these affect results; t(77)=1.40, p=0.165.

The result for treatment 7 seems anomalous. More positive emotion is reported in response

to a vocalising R5 (treatment 3) than a silent one (treatment 1). Similarly, R5 combined with

ABOD3 (treatment 5) results in a more positive report. However, when these transparency

measures are combined, we see a marked drop in valence (treatment 7). Comparing treatments 5

and 7 we see a significant effect; t(77)=2.31, p=0.025. This may nevertheless be anomalous, due

to some particular unlikely grouping of participants, or may be a manifestation of the ‘Uncanny

Valley’ effect for mechanomorphic robots, described in Section 5.2 above. This is discussed in

more detail in Section 5.6.

5.5.6 Godspeed Results

The Godspeed questions are described in detail in Section 5.4.5 above. The results for the

eight treatments are summarised graphically in Figure 5-9. There are several significant results.

Firstly, there is a marked difference of 22.2% in the Likeability scores between treatments 1
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(3.23) and 2 (3.95); t(78)=3.65, p=0.0005. This shows that in the absence of visual or vocalised

transparency, the zoomorphic Buddy robot is considered significantly more likeable than the

mechanomorphic R5 robot. However, with Muttering this effect is eliminated. Likeability of

R5 in treatment 3 (3.20) is comparable with that of Buddy in treatment 4 (3.25); t(77)=0.247,

p=0.81. Similarly, Likeability is also comparable with the addition of the ABOD3 visual display.

Likeability of R5/ABOD3 in treatment 5 (3.43) is comparable with that of Buddy/ABOD3 in

treatment 6 (3.59); t(77)=0.874, p=0.3848.

Secondly, in the absence of any transparency measure, these results indicate a marked difference

in Perceived Intelligence between Buddy and R5. In treatment 1 R5 scores 2.92, compared with

Buddy’s score of 3.37 in treatment 2, an increase of 15.5%; t(78)=2.38, p=0.0197. Note that this

aligns with the 12.3% increase in the participants’ self report of the robots’ intelligence between

treatments 1 and 2 shown in Table 5.4. Again, with either vocalised or visual transparency

this effect is eliminated. Between treatments 3 (3.04) and 4 (3.06) the addition of Muttering

eliminates this effect. Similarly, treatment 5 (3.22) and treatment 6 (3.27) show that visual
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Figure 5-9: Results of the Godspeed Questions for the eight treatments. The data is normalised
per participant, per question. Error bars show 95% confidence interval (N = 317).

transparency also eliminates the effect of embellished morphology on perceived intelligence.

Finally, in light of the potentially anomalous result found for treatment 7 in the self report of

affect described in Section 5.5.5, and clearly shown in Figure 5-8, we must further investigate

these Godspeed results between treatments 1 and 7. The results for treatments 1 and 7 are shown

in detail in Table 5.7. There are no significant differences across any of the five dimensions

measured by these questions. However, there are small reductions in the anthropomorphism,

likeability and safety measures, although these fall short of statistical significance, due to the

level of variance in the results.

5.6 Discussion

We must preface the discussion of these results with some concern about the quality of the

participant responses. As mentioned in Section 5.5.1, the questionnaire asked an implicit

‘Gold standard’ question “Do you work with computers regularly (in your job, as someone self
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Table 5.7: Comparison of Godspeed results for treatments 1 (R5 no transparency measures) and
7 (R5 with ABOD3 and Muttering) outlined in Table 5.1.

Mean x̄ Anthropomorphism Animacy Likeability Perceived Safety
SD σ Intelligence

Treatment 1 2.23 2.32 3.23 2.92 2.92
σ 0.809 0.714 0.900 0.881 0.645

Treatment 7 2.03 2.32 3.10 2.96 2.76
σ 0.900 0.751 0.903 0.744 0.433

% change -10.1% -0.1% -4.4% 1.4% -5.7%

p value 0.200 1.000 0.521 0.827 0.199

employed, as a student, at home, etc.)?”. In none of the groups did 100% of participants answer

this question correctly. Therefore we should assume a fairly high degree of noise in these data

sets, arising from rushed or random answering, a disregard for detail, and misunderstanding of

the questions due to poor English language skills. These effects should be randomly distributed

across the eight treatments, but ‘randomly’ does of course not mean equally. Therefore our

conclusions should consider only major effects and those seen across or between multiple sets

of treatments, and we need to pay close attention to both effect sizes and p values.

The results presented in this chapter confirm the transparency effects found in previous experi-

ments, all with p values <= 0.005. Taken together with the results from Chapters 3 and 4, this

body of work provides convincing evidence that the transparency of a non-humanoid robot can

be significantly improved by the addition of a visual or vocalised representation of the internal

processing and state of the robot. However, it seems that adding both visual and vocalised

representations does not further increase transparency. In all our experiments we were unable to

achieve a Mental Model Accuracy (MMA) of more than 59% — see Tables 3.4, 4.5, 5.4. For

this robot and task combination, it appears that a limit is reached whereby no further application

of our real-time visual and vocalised transparency measures are effective at improving MMA,

and the remaining gap can only be closed through other transparency means, such as written or

diagrammatic documentation. Perhaps the real-time transparency of a robot reaches a saturation

level where no further additional information provided by the robot based on its internal decision

making can be incorporated into the model. An example of this can be seen in the failure of

participants to identify the ‘sleeping’ behaviour, described in Section 5.5.3. If participants have

no explanation to hand of the reasons why humans and animals sleep, then this behaviour may

seem incidental. Similarly, some participants would perhaps not see any purpose in detecting

humans, and so would discount this as being of incidental importance. Based on the work of

Linville, Fischer and Salovey (1989) and Kiesler and Goetz (2002) discussed in Section 5.2, we
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can hypothesise that the mental model of an unknown robot is so simple as to be completely

stereotypic. Stereotypically, robots stop when they are ‘thinking’ (processing), and this may be

why participants gave this explanation even when the transparency was strongly indicating and

indeed explicitly naming the sleeping behaviour. Perhaps our mental models of robots just do

not include a capacity for sleeping.

A parallel exists here with political transparency. Unless citizens have some understanding

of the mechanisms and structures of government and have some appreciation of democratic

models, then no number of news items detailing the specifics of government activity will achieve

a good mental model in the minds of those citizens. Transparency techniques based on the (near)

real-time reporting of events can only achieve so much (Relly and Sabharwal, 2009). Education

is also required, to give us better models to understand the world as we encounter it.

A vocalising robot, or more prosaically a ‘talking’ robot, would appear to greatly increase the

confidence that participants have to report that they understand what the robot is trying to do.

Although we see a very significant effect in this online experiment, see Section 5.5.4, this was

not seen in the directly observed scenario of Chapter 4, see Table 4.5. Perhaps seeing a silent

video of a robot provides insufficient stimulus to engender confidence, whereas in a directly

observed environment the stimulus of a non-vocalising robot is sufficient. What is striking about

the results shown in Figure 5-6 is the discrepancy between the change in actual MMA accuracy,

and the change in reported confidence of participants due to vocalisation. Human language can

be understood in terms of manipulation (Wortham and Bryson, 2018) and it seems a talking

robot may be better able to manipulate us than a dumb one. Perhaps we might be more easily

deceived by talking robots than silent ones.

A small non-humanoid robot moving slowly around a pen, and presented online in a video is

unlikely to produce strong emotional responses. As we saw in Chapter 4, a talking robot would

seem to create slightly more positive emotions overall, though with a high variance between

individuals relative to the mean, see Section 5.5.5. These results are similar to those found in

the directly observed scenario in Chapter 4, Section 4.5.2. For emotions, the wide variance in

these experiments is of interest in itself. Clearly there has been far too little time for humans

to have acquired biologically evolved responses specific to artificial agency, but these wide

variances indicate that the population does not have broad, culturally agreed norms for how to

feel in relation to robots. Our models are individual and vary widely, probably based more on

individual personality, anecdotal exposure to media reports and our predisposition to read and

watch science fiction, than on any more broadly culturally acquired responses from parents or

authority figures.

The Godspeed results show some significant differences based on morphology, with the zoomor-
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phic robot being perceived as more intelligent and more likeable. In Section 5.2 we saw how

zoomorphic robots have been found to be more likeable, and how an increasingly liked artefact

attracts closer attention. This attention improves our visual perception of the robot, including

our perception of agency, hence we achieve a richer model of the robot. This hypothesis can be

summarised simply as:

Zoomorphism→ Increased Likeability→ Increased Attention→ Improved Model (5.1)

However, this effect does not occur in the presence of a visual or vocalised transparency measure.

This may be because the focus of attention is divided between the robot and the transparency

measure.

The interaction between robot morphology and transparency measures is apparent from the data,

and indicates that a zoomorphic form may reduce the efficacy of transparency for increasing

MMA. This may also be explained with a similar hypothesis, shown in the three stages 5.2, 5.3

and 5.4 shown below. Zoomorphism directs attention to the visual appearance of the robot, and

away from the transparency measures, therefore they are less effective.

Zoomorphism→ Increased Likeability→ Increased Visual Attention to Robot (5.2)

Increased Visual Attention to Robot→ Less Attention to Transparency Measures (5.3)

Less Attention to Transparency Measures→ Lower A f f ect on Mental Model Accuracy

(5.4)

The Godspeed results do not significantly reinforce the anomalous result seen in the Affect

results for treatment 7, however they offer suggestive evidence that indeed we may be seeing a

weak uncanny valley effect, where the R5 mechanomorphic robot exhibits speech and behaviours

that are understood to be associated with a human, in contrast to the clearly non-humanoid

appearance of the R5 robot. In contrast, the zoomorphic robot is considered more favourably, as

our mental models for animals are more flexible than those we apply to humans. Perhaps we are

more comfortable with the idea of talking animals than we are of talking machines.

The trivial embellishment of the R5 robot — simply adding a bee-like cover — alters its form

sufficiently to have significant effects on our understanding of its behaviour and our attitude

towards it. This alteration also has more subtle effects on our ability to benefit from visual or

vocalised transparency measures. Before we paint faces on our robots, or cover them in fur,

we need to think carefully about whether this might have unintended consequences for those

destined to encounter and interact with our autonomous artefacts.
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5.7 Conclusions and Further Work

Firstly and most significantly, the experiments in this chapter reconfirm that the addition of a

visual or vocalised representation of the internal processing and state of the robot significantly

improves transparency, by which we mean the ability of a naive observer to form an accurate

model of a robot’s capabilities, intentions and purpose. This is a significant result across a

diverse, international population sample and provides a robust result about humans in general,

rather than one geographic, ethnic or socio-economic group in particular. However, in all

our experiments we were unable to achieve a Mental Model Accuracy (MMA) of more than

59%, indicating that even with our transparency techniques, naive observers’ models remain

inaccurate. It may be that a limit is reached whereby no further application of our real-time

visual and vocalised transparency measures are effective at improving MMA, and the remaining

gap can only be closed through other transparency means, such as written or diagrammatic

documentation.

A vocalising, or ‘talking’, robot greatly increases the confidence of naive observers to report

that they understand a robot’s behaviour when observed on video. Perhaps we might be more

easily deceived by talking robots than silent ones.

The zoomorphic form of our R5 robot is perceived as more intelligent and more likeable. We

suggest that the zoomorphic form attracts closer visual attention, and whilst this results in an

improved MMA, it also diverts attention away from transparency measures, reducing their

efficacy to further increase MMA.

The trivial embellishment of a robot to alter its form has significant effects on our understanding

and attitude towards it. We need to be careful not to trivially embellish a robot to make it more

likeable or appear smarter than it is, at the possible expense of making its true capabilities and

purpose less transparent, and it’s behaviour more difficult to understand. As Fong, Nourbakhsh

and Dautenhahn (2003) point out, the design space of behaviour and appearance needs to

be investigated systematically so that systems are specifically tailored for both the functional

objectives of the robot and the educational, therapeutic and individual needs of users.

Since this experiment was completed Winfield (2017) proposed a scheme of four dimensions

to measure the intelligence of a robot: Morphological, Individual, Social and Swarm. Perhaps

rather than a linear scale, future work might consider measuring using perception of intelligence

along these four axes.
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Chapter 6

Synthesis and Further Work

"You look at trees", he said, "and call them ‘trees’, and probably you do not think twice
about the word. You call a star a ‘star’, and think nothing more of it. But you must
remember that these words ‘tree’, ‘star’ were (in their original forms) names given to these
objects by people with very different views from yours. To you, a tree is simply a vegetable
organism, and a star simply a ball of inanimate matter moving along a mathematical course.
But the first men to talk of ‘trees’ and ‘stars’ saw things very differently. To them, the
world was alive with mythological beings. They saw the stars as living silver, bursting into
flame in answer to the eternal music. They saw the sky as a jewelled tent, and the earth as
the womb whence all living things have come. To them the whole of creation was
‘myth-woven and elf-patterned’."

— J.R. Tolkien, quoted by Humphrey Carpenter, The Inklings

“Will we solve the crises of next hundred years?” asked Krulwich. “Yes, if we are honest
and smart,” said Wilson. “The real problem of humanity is the following: we have
paleolithic emotions; medieval institutions; and god-like technology. And it is terrifically
dangerous, and it is now approaching a point of crisis overall. Until we understand
ourselves,” concluded the Pulitzer-prize winning author of On Human Nature, “until we
answer those huge questions of philosophy that the philosophers abandoned a couple of
generations ago — Where do we come from? Who are we? Where are we going? —
rationally, we’re on very thin ground.”

— Public discussion between E.O. Wilson and James Watson, moderated by Robert
Krulwich, Harvard Magazine, September 2009
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6.1 Summary

This research is motivated by the wide ranging concerns of human cognitive bias, the cultural

perception of robots, confusion about the moral status of robots in society, and several societal

concerns relating to the widespread adoption of autonomous robotics in social environments.

These concerns are described in more detail in Section 1.1. In this chapter, based on these

concerns together with the results of the robot transparency experiments described in detail in

Chapters 3, 4 and 5, I argue that we have a moral responsibility to make robots transparent, so

as to reveal their true machine nature. I go on to recommend the inclusion of transparency as a

fundamental design consideration for intelligent systems, particularly for autonomous robots.

This chapter commences with a clarification of terms, such as artificial intelligence and AI

ethics, that are frequently poorly defined and misused by the wider public media, and even

sometimes by academia. First, I recommend a short set of unambiguous definitions that may not

be universally recognised, but have been carefully observed in this document. Using these terms,

I go on to define robot ethics and discuss its purpose and contemporary relevance to society. I

argue that professionals within the fields of AI generally, and robotics more specifically, have a

moral duty to make their products transparent, revealing the products’ capabilities and machine

nature. Further, I argue that such products should be transparent with respect to the true purpose

and objectives of the designers.

I conclude this chapter with suggestions for further work. I suggest additional transparency

measures that could usefully be investigated. I also note that we still need to systematically

investigate the multi-dimensional design space of robot behaviour and appearance in order to

better understand their effect on how we perceive and understand robots. I briefly mention a

wider programme of multi-disciplinary work to investigate the wider societal impact of robots

and Autonomous Intelligent Systems, leading to the informed creation of standards, regulation

and policy. Finally, I suggest further work to extend the implementation of the Instinct Planner

to other platforms, and to investigate new applications for this technology.

6.2 Tools, Machines, Robots and Algorithms

Throughout this dissertation, and indeed throughout the related literature, the terms robot,

machine, tool and algorithm are often used loosely and even interchangeably. Depending on

context, and to avoid a repetitious prose style, this may be of no great consequence. However,

there is an important sense in which we must be clear on the underlying concepts to which

these terms refer. As Marx (1867) originally observed, and Gunkel (2017a) elegantly puts it,
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Machine! = Tool — a machine is not exactly the same thing as a tool. A tool is a device used

by a human to enable them to perform some work. A machine, once set in motion, performs

some work without the further intervention of the human. Machines do work that humans would

otherwise do, and in addition do work that humans are unable to do — an aircraft is a machine.

By Gunkel’s definitions, a machine can be considered to be an autonomous tool, that is, a tool

that is self sufficient and independent. Critics may argue that machines are only transiently

independent, as they require regular maintenance and repair, but we may argue the same for

humans, whose independence from one another is also merely transient. Nevertheless, humans

are generally considered autonomous, and therefore we can say the same of machines.

An algorithm is generally defined as a repeatable sequence of steps to solve a problem. Algo-

rithms must be executed in some manner in order to arrive at a solution to the problem. This

execution may involve a human using pen and paper, a mechanical or hydraulic device, or some

other mechanism of parts, but the process of execution is known as computation. It is important

to note that computation is a physical process, requiring space, energy and time.

An algorithm encoded in a programming language of some sort, and executed on a computer, is

a tool. It is initiated and supplied with some data by a human, does some useful work with that

data by manipulating it, and produces an output. Examples include graphics tools to manipulate

images, machine learning algorithms to extract predictive statistical correlations from data,

and database search algorithms to quickly find specific data in a large database given certain

search criteria. A machine may be constructed from computer hardware executing one or more

algorithms, arranged in such a way that the algorithms are repeatedly invoked automatically in

some kind of loop, by a repeating timer or repeatedly triggered by some external event such as a

signal from a physical sensor or the arrival of a message from another system. Once initiated,

a machine processes input data and generates output data indefinitely, until interrupted by a

human, or another machine. An internet search engine, such as Google, is a machine. A robot is

also a kind of machine. It has sensors that measure physical phenomena, and use this sensor

data as the input to repeatedly executing algorithms. The algorithms, designed by humans,

process this data and generate outputs which are used to drive effectors, creating physical output

in the world. For a robot to be useful, it requires algorithms that are designed to achieve goals,

or objectives, set by its designer. Once the robot is operational, is operates autonomously (that

is, in a self-governing manner) without the necessity for further human intervention. We must

remember that the algorithms that control the robot’s behaviour are designed by human intent.

Some machines, for example domestic washing machines, operate automatically, i.e. without

human intervention, but lack the self-governing characteristics inherent in artefacts generally

considered to be robots.

This brief explanation adequately explained the concept and basic structure of a robot without
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recourse to the term artificial intelligence, or AI, at all. AI is a term originally coined by

academics to study natural intelligence, particularly the kind of intelligence observed in humans,

and to try to understand how intelligence arises and operates by simulating it using computers

— artificial (i.e. human-made) intelligence (McCarthy et al., 2006). Intelligence is one of

those words that may mean all kinds of things, and as we’ve shown in Chapters 3-5, asking

if something is intelligent is as much about asking after the nature of intelligence, as asking

whether the artefact or organism itself possesses that property. However, in alignment with its

original use by academics, and for our purposes, intelligence is simply defined as doing the right

thing at the right time, given the current context (Bryson and Winfield, 2017). In biology, the

term homeostasis is used to describe the stable internal environment that is preserved inside any

living organism. As its internal energy sources are consumed and waste products are produced,

and as its environment changes, the organism must behave intelligently in a self governing

manner to maintain homeostasis. Thus we say that all living things are intelligent. A robot that

stands upright as it moves, despite uneven terrain and the force of gravity, or avoids obstacles

in its path is similarly behaving intelligently. The intelligence is designed by a human, it is

therefore artificially intelligent, since artificial simply means ‘made or produced by human

beings rather than occurring naturally’1. So, we see that AI is both a research theme and a

suitable description for certain types of machines, particularly autonomous robots. Intelligence

is an observable phenomena, and if that phenomena is observed in an artefact, it is by definition

artificial. A robot does not ‘use AI’, nor is there such a thing as ‘an AI’. As I have demonstrated,

robots are well described and characterised without recourse to the term AI at all, but can be

said to ‘express AI’.

6.3 Robot and AI Ethics

Having established the concepts of Robot and AI, what do we mean by robot ethics? Moral

philosophy, or ethics, is a branch of philosophy concerned with recommending, defending

and structuring concepts of right and wrong behaviour (Fieser, 2017). Therefore AI ethics is

concerned with the acceptable behaviour of those working in the research field of AI, and is

extended to cover those that design, purchase or operate products, including robots, that may

be produced as a result of that research. Robot ethics is simply a subset of AI ethics. I make

this clarification due to the moral confusion outlined in Section 1.2.3. This confusion leads

some to confer moral agency to robots, and thus to wrongly assume that robot ethics concerns

some ability of a robot to make ethical decisions and take responsibility for them — those who

investigate this possibility refer to their work as machine ethics. However, since robots are not

1https://en.oxforddictionaries.com/definition/artificial
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moral agents, the responsibility for robot behaviour lies with those attributed with responsibility

for a robot (Boden et al., 2011; Bryson, 2018). AI and Robot ethics is not primarily about

building software and machines that make ‘ethical’ decisions. It is about humans making moral

choices about how and when to develop and deploy AI technology. We are the moral agents, AI

is a tool.

6.3.1 Facts Versus Values

How does an investigation into robot transparency provide a basis for authoritative or even

indeed meaningful normative assertions concerning how society should design and use robots?

Why do facts concerning human-robot encounters have any bearing on how we should build

robots? Facts are things that people can know and understand, values are things that people

care about (Billington, 1988). Some moral philosophers, together with scientists and others

with some knowledge of philosophy, immediately reach for Hume’s well known adage that ‘you

can’t get an ought from an is’. This may be interpreted by some as meaning that scientific facts

— what is — have little relevance to a discussion of how humans ought to behave. Hume (1738)

makes the argument that human morality is based on human emotion, and that emotion is not

subject to reason. Moral rules are not based on reason, informed by facts about the world, but

are instead the products of some irrational internal emotion generating mechanism. In contrast,

Kant (1785) argues that fundamental moral positions are essentially fixed and to be discovered

not through scientific means, but through a philosophical investigation of what is truly ‘good’.

Kant’s deontological approach boils down to a correct understanding of duty, epitomised in

Kant’s Categorical Imperative; ‘Act only according to that maxim whereby you can, at the

same time, will that it should become a universal law.’ This is a particular formulation of the

Biblical Golden Rule; ‘Do unto others as you would have them do unto you’. The golden rule,

or law of reciprocity, is found in many cultures and religions, and is particularly of note due

to its universal nature; one’s behaviour to another is not contingent on the behaviour of the

other. However, despite their very different positions, we see that both Hume and Kant would

agree that moral behaviour cannot be sought by an appeal to science. The empirical basis for

ethics is further dismissed by more recent philosophy, particularly the Logical Positivists (also

known as the Vienna group) of the late 1920’s and 1930’s. This includes, for example, the work

of Schlick, Carnap and Neurath. The Logical Positivists rejected most classical and 18th and

19th century philosophy, certainly Kant, Hegel and Nietzsche, as vacuous. They established the

tradition of Analytical Philosophy and defined their outgroup as Continental. Their assertion is

that all moral philosophy is meaningless.

The Continental philosophical tradition, though much broader and without the same degree
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of internal consensus found in analytic philosophy, is best differentiated by the idea that

all observations are made within pre-existing frameworks of knowledge, understanding and

experience, and therefore that there is no truly objective empiricism. Science, and the scientific

method itself, depends on some preconceptions such as causality and determinism. Whilst

scientists acknowledge that all models are wrong as they are necessarily simplifications, models

are nevertheless very useful (Box, 1979). Very broadly, Continentals ascribe to the idea that

only through philosophical reflection can we arrive at the deepest understanding of the human

condition, and therefore that whilst science has practical value, it has little to contribute to human

morality. From the 1920’s through to the 1970’s, Martin Heidegger deployed and extended these

postmodernist ideas in relation to the understanding of technology. Heidegger is recognised as

a leading figure in the philosophy of technology, yet his thinking is widely acknowledged as

impenetrable for the amateur philosopher, and his formulations are described by commentators

as ‘Byzantine’ (Waddington, 2005). As a professional philosopher, Waddington makes it clear

that Heidegger’s work is readily misunderstood, and illustrates this point by critically correcting

academics from other disciplines who have attempted some kind of analysis relevant to their

own expertise. This may be understood as a kind of signalling of academic fitness by obscurity.

My point here is that whatever the content of Heidegger’s work, its result has been to intimidate

scientists, engineers and technologists, alienating them from philosophical engagement. Taken

together, the history of both moral philosophy and the philosophy of technology have had a huge

influence on modern thinking, reinforcing a false dichotomy between on the one hand science,

engineering and empiricism more generally, and on the other the arts, politics, philosophy and

literary thinking (Snow, 1959). This is my account for why many scientists and engineers

do not engage in ethics, and why some philosophers choose not to engage readily with facts.

This account also helps to identify why society expects to receive moral instruction from the

humanities, science being largely without the appetite for moral engagement, and engineering

being considered merely about the building of appliances.

6.3.2 The Science of Morality

More recently there has been progress towards a scientific understanding of morality, based on

evolutionary theory and evidence from psychology and neuroscience. Ruse and Wilson (1986)

argue that we are deceived by our genes into thinking that a disinterested objective morality

exists, and that we are somehow bound by it. This deception is adaptive for our species, and they

assert that evidence from both genetic and cognitive studies demonstrate that our brains are not

a tabula rasa, ready for moral values to be implanted by culture, but rather that our biological

evolution results in moral mechanisms and biases towards specific responses to moral questions.

Hauser (2006) describes this moral mind mechanism in some detail, and cites extensive cross
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cultural empirical research in support of its universal nature. Haidt (2006) develops the idea of

“the Elephant and the Rider” as a metaphor for a dual-process theory of the human mind. The

rider represents our reasoned plans and goals formulated by the conscious mind. The elephant

represents our visceral reactions and ‘gut feelings’. Generally, the rider is able to direct the

elephant, provided the elephant is in general agreement. However, the elephant is of course much

stronger than the rider, and once appropriately stimulated, the elephant reveals that she is in fact

in control, and whilst riding, the rider is powerless. Therefore, the role of the rider is to provide

the appropriate stimulus to the elephant, such that the elephant’s visceral responses are in line

with the objectives of the rider. Haidt, Graham and Joseph (2009) investigate the biological

foundations of human morality, searching for the psychological foundations upon which human

culture creates moral systems. They identify five foundations: Harm/care, Fairness/reciprocity,

Ingroup/loyalty, Authority/respect and Purity/sanctity. For the first four of these Haidt, Graham

and Joseph find evidence of continuity with the social psychology of other primates, indicating

that these foundations may derive from a shared evolutionary ancestor, and may be adaptive,

increasing fitness for social species that exhibit these traits. Purity may have evolved from the

disgust response to tainted food, co-opting the strong emotional response that disgust generates

and putting it to use within a social context, as a means to enforce social norms.

Miller (2008) reviews the work of Hauser, Haidt, Graham and Joseph and several others,

particularly Greene and Haidt (2002) regarding the science investigating moral norms and

reasoning. He makes the obvious yet important point that morality, rather than being a feature

of an immaterial or emergent self, is in fact a product of the human brain. In all animals, neural

circuitry grounds self caring and well-being, and similarly it is reasonable to hypothesise that

morality results from neurobiological processes, particularly attachment and bonding to mates

(Churchland, 2011; Shostak, 2013). In addition to the electrical activity of neurons, the brain is

a biological organ within a living being, and its activity is substantially modified by the complex

‘chemical soup’ of hormones and other neurotransmitters produced by the body. These complex

mechanisms also contribute significantly to behaviour (Rohlfshagen and Bryson, 2010). Haidt

(2012) adds a sixth moral foundational element, Liberty (that is, freedom of action), to the

list of moral foundations described by Haidt, Graham and Joseph. This finalises Haidt’s list

of six moral emotions : Care, Fairness, Liberty, Loyalty, Authority and Purity. Haidt makes a

convincing case that these moral intuitions are a biologically evolved adaptation, subsequently

shaped by human culture. They served the survival needs of our ancestors by making us sensitive

to our social and physical environments, in order to identify harms or other impediments to our

survival. Moral psychology developed as a solution to the evolutionary problem of cooperation

within larger groups, where close biological relatedness is insufficient to maintain group stability

Hamilton (1964).
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There are several dual-process theories of cognition, the basic premise being that two ‘systems’

of cognition operate in parallel within the human brain, and both influence behaviour and

conscious thought. These theories do not postulate separate physical systems, for example

resident in separate brain areas, but are variously considered as modes of operation, or more

abstractly, simply useful metaphors that explain and predict human cognition. Typically, one

system operates at an intuitive or experiential level, whilst the other operates in an analytical or

rational mode (Epstein, 1998; Sherman, Gawronski and Trope, 2014).

Kahneman (2012) elaborates one of the most well known theories; the ‘System 1, System 2’

model. System 1 represents a fast mode of cognition, generally understood to be below the

level of consciousness. In regard to moral thinking, System 1 can be thought of as a system

that provides intuitions, impressions, impulses and feelings, rather than fully formed rational

judgements. System 2 is associated with the deliberative, conscious and rational process that,

based on evidence, comes to a final judgement and produces an associated narrative explanation.

System 1 operates effortlessly, and is generally considered to embody biases and norms resulting

from our evolutionary past. It may also operate by substituting a related easy question for an

initial hard question, for example replacing ‘what is the best course of action?’ with ‘what do

most of the people around me think is the best thing to do?’ This is of course a much easier

question to answer, but in novel or extreme situations it may ‘fail’, producing poor outcomes for

both the individual and the group. System 1 may also fail by using ‘intensity matching’, for

example by matching the intensity of an emotional response with a monetary value of financial

philanthropy. In contrast, the operation of System 2 is resource intensive and therefore requires

effort, although correctly employing System 2 thinking can overcome the errors of judgement

made by System 1. System 2 takes the ‘output’ of System 1 and due to the ‘lazy’ nature of

System 2, it often relies on System 1 intuitions, merely creating a conscious narrative to justify,

initiate and maintain the resulting behaviour.

Greene (2014) provides perhaps the most useful dual-process model of moral judgement. His

metaphor is that of a modern digital camera. The camera has two modes; ‘Preset mode’, and

‘Manual mode’. Preset mode equates to the idea of intuitive moral judgement, or System 1

thinking. Manual mode equates to our ability for deliberative moral reasoning, System 2. Greene

explains that Preset mode only works well in certain well known situations, such as when we

make moral judgements about killing at close quarters. Preset mode is not particularly useful

for evolutionarily novel situations, such as killing at a distance using military drones, or killing

using autonomous robots (Perez Vallejos, Wortham and Miakinkov, 2017). Similarly Preset

mode has little to offer us when it comes to uncertain outcomes, long timeframes or distributed

responsibility. In these situations we must resort to Manual mode. Greene proposes we deploy

a consequentialist rational philosophy in these circumstances, where moral decisions attempt
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to maximise happiness and minimise suffering. However, the most interesting feature of this

model is the implicit camera operator, who must decide in which mode to use the camera. We

need to make informed choices about when to follow our implicit moral intuitions, and when to

recognise that they may be faulty, requiring a deliberative, rational approach.

We see that our basic emotions and our framework of moral intuitions are a mechanism, evolved

to orient us to do ‘what we prudentially ought’ (Churchland, 2011). It is also evident that

in evolutionarily novel situations, such as when we encounter autonomous artificial agency,

our moral intuitions are likely to be faulty, and must be considered suspect. Therefore, when

considering AI ethics, a scientifically informed viewpoint to moral philosophy, in line with

Greene, suggests that we should follow a well informed, though ultimately intuitive deontologi-

cal approach to moral decision making, along Kantian lines. However, when we reach a point

where we either have no intuitive moral conviction, or when moral intuitions within a population

vary widely, we can conclude they are faulty and instead resort to a consequentialist approach.

This approach is particularly useful when strong but opposing intuitive moral convictions exist.

Consequentialism demands that we seek to understand the benefits, costs, opportunities and

risks associated with the decisions we make. We can use scientific knowledge, understanding

and insight to maximise positive outcomes and minimise negative outcomes for society as a

whole. As Churchland points out “science can teach us, and has already taught us, a great deal

about what we ought to do . . . [without implying] that science can solve all moral dilemmas”.

6.3.3 An Empirical Basis for Morality

Despite the prevailing popular cultural view of science as no more than a hatchery for technology,

some scientists and philosophers are now brave enough to argue that we can indeed establish

an empirical basis for what we ought to do, based on an empirically underpinned theory of the

needs of humans (Harris, 2011). Scientists may appear amoral because they readily change

their opinion in the light of new evidence. This may seem like weakness or lack of principle,

but in fact comes from adherence to the principle that we should best act according to our

knowledge, based on evidence, scrutinised through the lens of the scientific method. To not

change one’s position in the light of new evidence would be to act either out of pride, foolishness

or selfishness, but in any case to act without deference to reason and rational thinking. Such

an act, being solely instinctive in nature, denies our humanity, for to be human is to inhibit

instinctive behaviour and rather to act from informed reason. The success of our species is in

part thought to be a result of this ability, combined with prosocial behaviour (Burkart et al.,

2014; Pinker, 2018). A scientifically informed understanding of our moral sense can alert us to

violations of rational moral conclusions that occur as a result of our psychological make-up.

119



Our moral intuitions can be unreliable, and are subject to deception (Pinker, 2008). For example,

our foundational attachment to Purity make us vulnerable to the association of a physically

pure appearance with a morally pure character. Notice how some religious leaders (and the

ruling classes in some countries) dress in ‘pure’ white clothing to symbolise their inner moral

purity, and thus with considerable success claim some moral authority for their position and

pronouncements (Dennett, 2007). Similarly, Pinker (2008) points out that our strong emotional

disgust response ‘imposes taboos that make certain ideas indiscussible’. When it comes to

robots, the results of the experiments described in Chapters 3, 4 and 5 strongly support the

theory that we are unprepared by biological or social evolution for encounter with robots, and

thus our intuitions are naive and open to easy manipulation. The moral confusion that exists

about robots results from the naivety of our moral intuitions regarding robots.

In this dissertation I therefore seek to make a contribution to a specific area of the new moral

philosophy of robot ethics. This contribution is based on scientific understanding of humans,

and empirical evidence about how humans understand and interact with autonomous systems.

Based on this evidence, I argue that transparency ought to be a fundamental design consideration

for artificially intelligent systems, and that unless there is some over-arching ethical reason why

a specific system should not be transparent, then this consideration should be promoted to a

requirement.

6.4 The Case for Transparency as a Fundamental Design Consid-
eration for AI Systems

We might surmise that the prolonged exposure of human culture to autonomous agents of all

kinds will eventually result in a robust set of cultural responses and ethical norms. Humans

have assimilated all kinds of technology into culture, from air transport to pharmacy to mobile

communications, so it might be considered reasonable to expect that with sufficient exposure,

individuals and groups will become familiar with robots and other autonomous intelligent

systems (AIS), and will be able to beneficially and appropriately interact with them. However,

there are several important considerations that particularly apply to robots and AIS that do not

apply to previous forms of technology.

• Humans particularly react to autonomous agency. Our biological evolution has equipped

us with agency detection mechanisms that operate as a fundamental component of per-

ception, and we are evolved to attribute human characteristics to agents. We anthropo-

morphise robots (Guthrie, 1997; Dautenhahn, 2007; Salem et al., 2013).
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• With respect to a robot, predicting function from form is not reliable. The goals and

intentions of a robot are defined by human designers. Two robots with identical form may

be running very different software, having widely divergent capabilities and with very

different intended functions. Even if they are running the same software, the ultimate

goals, i.e. those of the robot operators, may be quite different. One may take a responsible

approach to security and data protection, another may not, or may even be using the robot

to harvest personal data for commercial or other inappropriate purposes.

• For a ‘disembodied’ AIS, such as a chatbot or voice activated digital assistant, there is

no form from which we might predict function. Beyond anthropomorphism, we have no

useful mental model to predict capabilities, goals and intentions.

• The capabilities, goals and intentions of a robot or AIS are not stable over time. We

are familiar with natural agents that learn and acquire new skills over time, however

artificial agents may update almost instantaneously. These updates may occur as a result

of individual learning, consolidated learning coordinated over the Internet or simply

through a traditional software update. We are potentially forever naive.

For these reasons, it is hard, if not impossible, for humans to develop culturally acquired

responses to robots that will in general be appropriate and result in useful interactions. The long

term cultural result may be to rely on the default intuitive responses to avoid harm, rejecting

interaction with robots and AIS. Conversely, we may be overcome by our anthropomorphism

and embrace robots and even other AIS as fellows, extending rights and conveying moral

obligations to our machines. We might fail to notice that in fact they are manipulation machines,

authored by other humans, and have no identity other than that provided by their design. Either

outcome is likely to be problematic for humanity.

A better approach is to recognise that we can choose to make robots and other autonomous

intelligent machines such that they are transparent. We can choose to make their machine

nature apparent, thus differentiating them from humans, and other natural living things. We can

choose to have our machines tell us what their capabilities are, what they are trying to do (their

intentions) and why (their goals). There seems to be little reason not to take this approach, and

every reason to do so.

Given the potential for harm, and the availability of an effective remedy, I argue that society

should expect those who design and operate robots and AIS to make their artefacts transparent.

If there is some over-arching reason why transparency should be avoided, then designers and

operators should be able to make their case, but the default position should be one of appropriate

transparency.
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However, the demand for transparency is not without its challenges. In the following sections I

explore the problems of creating transparent minds, and of communicating information relevant

to end-users.

6.4.1 Transparent Minds

Traditional symbolic approaches to AI are generally seen as more amenable to the generation

of real-time narratives that explain, to some extent, the behaviour of a robot. I have shown in

Chapter 2 that it is indeed possible to create effective and adaptable action selection systems

for robots using a biologically inspired control paradigm, amenable to the implementation of

run-time transparency. The need to make robots comprehensible to human partners is in fact

sometimes used as a justification for biologically inspired approaches to robotics (Brooks and

Stein, 1994; Sengers, 1998; Novikova and Watts, 2014; Wortham and Bryson, 2018).

The ‘Machine Learning’ (ML) approach to AI is a powerful alternative approach for the

construction of intelligent systems. It typically harvests human intelligence from data, and

encapsulates this within the numerical parameters of an algorithm, such that for a given set of

inputs, the algorithm calculates an output value. ML can also be used to capture the underlying

structural regularities of some complex dynamic system, such as the physical rules necessary for

legged locomotion (walking). The processing of the initial ‘training’ dataset typically requires

intensive computation and may take some time. However, once ‘trained’ these numerical

approaches are very fast in operation. There are many examples where ML has been proven to

perform extremely well. For example, ML is well known in image recognition applications such

as Automatic Number Plate Recognition (ANPR) (Keilthy, 2008), automatic face recognition in

digital cameras and smart phones (Lawrence et al., 1997), and the automatic image categorisation

provided by search engines such as Google and Bing (Krizhevsky, Sutskever and Hinton, 2012).

ML also underpins speech and handwriting recognition technology and predictive text or ‘auto-

complete’ (Mikolov et al., 2013). Since its inception, ML has been applied to the problem

of playing games. However, the notable success of the AlphaGo project to play the board

game Go has been widely reported (Silver et al., 2016) and subsequently ML is now broadly

considered to have ‘solved’ the general problem of playing games. Deep Recurrent Neural

Networks, a particular type of ML approach, has recently been successfully demonstrated as

a control strategy for traditional robotics applications such as dexterous manipulation, legged

locomotion and car driving (Lillicrap et al., 2016). This work uses simulation environments,

known as ‘physics simulators’, to facilitate very large numbers of trials. During these trials, a

reinforcement learning algorithm repeatedly tunes the parameters in the control algorithm, based

on a simple objective function. For example, to train the system for legged locomotion, the
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objective function is simply to maximise forward motion. This eventually results in intelligent

behaviour in a wide variety of virtual environments, some of them novel i.e. environments not

encountered during the training process. Lillicrap et al. also deploy their technology to control

a large physical robot. In the real physical world it is not possible to run many thousands or

millions of trials, and so basic training is provided by human operators who guide the arms

and end effectors of the robot. This effectively reduces the search space by many orders of

magnitude. A subsequent unsupervised (in the sense that no human operator is present) set of

trials results in a robot able to effectively carry out complex and dexterous manipulation tasks

with high repeatability and performance.

There are many types of numerical approach to machine learning, beyond the scope of this

work (Tipping, 2004; Murphy, 2012; Russell and Norvig, 2016). However, most share a similar

limitation: they can be characterised as being ‘black box approaches’. There is also research

in progress to investigate interpretable, or ‘white box’ ML approaches, where each variable in

the system is related to some parameter of the real world, and ‘grey box’ approaches where

some parts of the system are human interpretable while other parts are not (Ribeiro, Singh and

Guestrin, 2016).

Whilst the output of an opaque system may indeed be an intelligent response to its inputs and

current internal state, ML approaches generally produce no narrative to explain why the system

generated a certain output. Indeed, David Silver the lead scientist of the AlphaGo project

explained at his ICAPS 2016 talk in London2 that he was “really unable to determine why

AlphaGo chose a particular move over all the others available”, Silver also said that whilst

it is clearly possible to look into the algorithm as it runs, he is no wiser for doing so (taken

from the Authors contemporaneous notes from the conference). The use of deep learning and

similar ‘black box’ ML for action selection inevitably creates an opaque system, since the action

selection mechanism is unable to give an account of the actions selected by the machine.

We might argue that the opaque nature of ML based AI is really no different from the opaque

nature of the human mind. In both cases, we can only observe resulting behaviour. We must

infer capabilities, goals and intentions based on our own mental models. We are able to make

sense of humans, and to a lesser extent animals, when we encounter them, so we might argue

that we can learn to deal with robots and AIS in the same way (Wortham and Bryson, 2018;

Saxe, Schulz and Jiang, 2006). As manufactured artefacts, robots are quite unlike humans and

animals, and this argument fails for the reasons given in the preceding Section 6.4. However, the

problem of transparency of ML systems remains. As yet, no effective solution has been found,

although various approaches have been suggested. Schwab and Hlavacs (2015) suggest a novel

2http://icaps16.icaps-conference.org/
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approach that uses the resultant behaviour of a black box AI system to construct a functionally

equivalent symbolic behaviour tree. This tree is then substituted for the previous black box

system. A behaviour tree can produce an explanation of decisions, and thus a black box AI

system is replaced with a functionally equivalent transparent system. This appears to be a very

promising line of research, although unfortunately there seems to have been little further work in

this area. Samek et al. (2016) investigate the use of ‘heatmaps’ with image recognition systems,

to indicate which areas of an image are most salient in determining the overall classification

output of a deep neural network (DNN). By manipulating individual pixels and groups of pixels

in the image, and subsequently measuring the effect on the output of the DNN, a map may

be constructed with contours indicating which areas of the image most contribute to the final

decision made by the DNN. In essence, this idea is similar to the graphical representation of

action selection, implemented in the ABOD3 tool, see Section 3.3.3. In both cases, a graphical

display is used to highlight information that may help users understand the operation of a system

exhibiting artificial intelligence. There is ongoing research work in the display of heat maps

for DNNs, but the approach requires considerable computational resources, since many pixel

manipulations must be considered in order to render the heatmap. It may therefore not be

suitable for real-time applications. To date these kinds of exploratory techniques have yet to be

applied to robot action selection, though this remains a possible route for future research.

6.4.2 Hybrid Architectures

As we have seen, ML technology yields a variety of very useful applications, from image

classification and machine vision through to speech recognition and natural language processing

(NLP). Many of these approaches and technologies are directly applicable to problems found in

the design of robots and AIS, particularly to create meaningful information from raw sensor data.

In a hybrid architecture, these black box systems create outputs which can then be used as a basis

for action selection implemented using traditional, or biologically inspired, action selection

mechanisms. The hybrid approach combines the ability of ML to make sense of complex real

world data, with the ability of traditional action selection to generate traceable and potentially

transparent decisions. Hybrid robot architectures combining deliberative and reactive layers of

control are proven to be effective (Nakhaeinia et al., 2015). The extension of this architecture to

include ML or probabilistic approaches for sensor input processing and analysis, for example

to process video camera input for pose estimation, does not prohibit such a system from being

transparent (Kornuta and Zieliński, 2013). Using this modular approach, transparency is still

possible in terms of the ability of the overall system to report the outputs from the sensory

ML subsystems, and the consequential decisions made by the action selection system. A robot

or AIS containing some ‘black boxes’ can still have a high degree of overall transparency.
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However, whilst there is considerable work to design appropriate modular frameworks for robot

software architecture, the need for end-user transparency has yet to become a recognised design

requirement (Reichardt, Föhst and Berns, 2015).

6.4.3 Humans Expect Intentional Explanations

When we communicate, we claim the attention of one or more others. This implies that at least

some of the information communicated is relevant to the receiver. Therefore relevance may

be seen as the key to human communication and cognition (Sperber and Wilson 1986). Put

simply, humans need some way to link an incoming communication signal, whether verbal or

non-verbal, to something they care about. If they are unable to do this, then the signal becomes

irrelevant, and no effective communication occurs. One of the problems of transparency is how

to provide a sufficient explanation of intentionality to create relevance. In order to understand

behaviour, humans often expect reasons to be provided (de Graaf and Malle, 2017). The problem

is that these reasons may not be held within the robot. For example, the R5 robot contains a

drive that causes the robot to periodically ‘sleep’. Rather like animals and humans, the robot

contains no explanation of why it needs to sleep — what is the ultimate explanation for sleeping.

The robot has a drive that makes it want to sleep after an extended priod without sleep, and the

sleeping behaviour is released when the robot is sufficiently close to an obstacle or wall — see

Section 3.3.2. Humans are able to report that they are ‘tired’ and want to sleep, but this is no

better explanation for the ultimate reasons for human sleeping, which are complex and still the

subject of scientific enquiry. Reporting tiredness is only generally a sufficient explanation for

human sleep because we all experience and have a proximal understanding of tiredness and

sleep. Human mind models of robots do not generally include the idea that they can become

tired, and hence the sleeping behaviour seems spurious and unexplainable. What is needed is an

explanation for the need to sleep, in order that we can make sense of the sleeping behaviour.

But this explanation does not reside within the robot, it is a design requirement implemented

by the designer, based on the need to conserve battery life and extend overall operation time.

This simple example drawn from our experiments shows us that there may be a limit on the

transparency that can be achieved by making the robot’s internal processing and state available

to the user using visual and vocalisation techniques.

In order to provide sufficient explanation to achieve understanding by a human user or observer,

the designer of the robot may have to explicitly add knowledge to the robot that is not required for

the robot to achieve its desired behaviour. The robot may need to be able to report information

about the designers’ or operator’s goals and intentions, solely to help the user build a mental

model sufficient to understand the behaviour of the robot. Typically this information resides in
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design specifications and user manuals, but it may also need to be included within the robot and

made appropriately available to the user at runtime. If the R5 robot were to have muttered “R5

has completed sleep to conserve battery power” then perhaps the sleep behaviour would not

appear so inexplicable.

6.5 Further Work

This section summarises the further work that is identified in each chapter. Some of this work

relates to further experiments to investigate anthropomorphism and robot transparency, and some

relates to a broader multi-disciplinary programme to understand how we design ‘understandable’

or transparent robots and AIS, and how we should create policy and regulate the use and

operation of AIS. I also suggest enhancements to the technical artefacts developed as part of

this research programme, together with potential new applications for this technology.

6.5.1 Anthropomorphism, Transparency and Traceability

All the studies of Chapters 3, 4 and 5 concentrate on making the decision making process

available to the participants. We do not consider making available the sensory model that exists

within a robot, nor making available the various thresholds that must be crossed to release the

various elements of the reactive plan. Perhaps to do so would overload the user with data, but in

some applications it may be helpful to gain an insight about how the world is perceived by the

robot, as this would aid an understanding of its subsequent decision making processes. It might

also be useful to investigate the benefits of a more complex sentence generation algorithm, able

to generate varying sentences that might make the vocalisation sound less ‘robotic’.

The research with the zoomorphic Buddy robot shows that trivial changes to appearance can

dramatically alter our perception and understanding of a robot. As Fong, Nourbakhsh and

Dautenhahn (2003) point out, the design space of behaviour and appearance needs to be

investigated systematically so that systems are specifically tailored for both the functional

objectives of the robot and the educational, therapeutic and individual needs of users.

Creating an explanation for behaviour is not only important as the behaviour occurs, but also

important for post-facto analysis. In this case transparency is often referred to as traceability. If

we wish to hold accountable the designers and operators of a robot, then being able to trace the

internal state and decision making processes helps provide the necessary evidence to construct

a case. In this work I have not considered traceability in any depth, although in using video

recording techniques with the ABOD3 tool (see Chapters 3 and 5), I implicitly demonstrate it.
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However, without access to a ‘gods eye’ view of the robot within an environment, traceability

may require more detailed presentation of sensor data, and this is an area for potential future

work.

6.5.2 Explainable AI, Policy and Regulation

This work concentrates on a practical investigation of robot transparency, however I have briefly

touched on the wider societal concerns related to robotics and AIS. As I illustrate in Section 1.2.6

we see a wide variation in current public policy relating to AI and autonomous robotics. One

explanation for this variation is a lack of empirical evidence relating to the psychological and

societal impact of deployment of autonomous intelligent systems. There is an urgent need to

generate scientific theory and data on which well reasoned policy can be constructed. We need

to understand the impact of real robots in society, not hypothesise based on cultural stereotypes

or the potentially biased views of those with specific economic and commercial objectives.

In addition, as Miller, Howe and Sonenberg (2017) point out, the achievement of effective

explanations from AI systems requires a multi-disciplinary approach, informed not only by the

computer scientists and roboticists involved in AI and HRI research, but also from psychology

and more widely from the social sciences and those engaged in moral philosophy and the

development of policy, both within and beyond academia. This work should have the objective

to create well informed standards, regulation and policy, leading to the effective and beneficial

use of robots and AIS.

6.5.3 Technologies

An obvious next step for the technology developed as part of this research is the implementation

of Instinct on other embedded and low cost Linux computing environments such as the RASP-

BERRY PI (Raspberry Pi Foundation, 2016). With more powerful platforms such as the PI, much

larger plans can be developed and this would facilitate testing of both the runtime performance

of very large plans, and the design efficiency of the Instinct Visual Design Language (iVDL)

with multi-user teams.

The Instinct Robot World is an entirely open source platform, available online. Those interested

in agent based modelling, cognitive architectures generally, and reactive planning specifically,

are encouraged to investigate these technologies and offer suggestions for new applications and

further work. One possibility might be to apply this architecture to the Small Loop Problem

(Georgeon, Marshall and Gurney, 2013), a specific challenge for biologically inspired cognitive

architectures.
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6.6 Conclusion

In this chapter, I have suggested definitions for artificial intelligence, AI ethics and robot

ethics as a precursor to exploring our moral obligations in the design and operation of robots

and autonomous intelligent systems (AIS). I have argued that science provides us with useful

explanations for moral positions and behaviours. Science enlightens us regarding the biological

and prosocial origins of moral preferences. The scientific method helps us identify the hazards

that exist when humans interact with robots and other types of AIS, such as ‘chatbots’. Humans

particularly react to autonomous agency, and readily anthropomorphise robots. With respect to a

robot, predicting function from form is not reliable. For a ‘disembodied’ AIS, such as a chatbot

or voice activated digital assistant, there is no form from which we might predict function. The

capabilities, goals and intentions of a robot or AIS are not stable over time. These arguments

are presented in full in Section 6.4. Based on these arguments, together with the evidence from

practical experimentation provided in Chapters 3, 4 and 5, I have argued that robot designers

and operators have a moral duty to make their products transparent, revealing the products’

capabilities and machine nature. Further, such products should be transparent with respect to

the true purpose and objectives of the designers.
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Chapter 7

Conclusions

“After five years’ work I allowed myself to speculate on the subject, and drew up some
short notes; these I enlarged in 1844 into a sketch of the conclusions, which then seemed to
me probable: from that period to the present day I have steadily pursued the same object. I
hope that I may be excused for entering on these personal details, as I give them to show
that I have not been hasty in coming to a decision.”

— Charles Darwin, On the Origin of Species by Means of Natural Selection; or, The
Preservation of Favoured Races in the Struggle for Life, 1869

“I have striven not to laugh at human actions, not to weep at them, not to hate them, but to
understand them.”

— Baruch Spinoza, Tractatus Politicus, 1676

7.1 The Effectiveness of Transparency to Improve Mind Models

The primary purpose of this research programme is to investigate robot transparency within

the context of unplanned naive robot encounter. In this context, ‘robot transparency’ means

the extent to which a naive observer is able to form an accurate model of a robot’s capabilities,

intentions and purpose.

Chapter 3 demonstrates that subjects can show marked improvement in the accuracy of their

mental model of a robot observed either directly or on video, if they also see an accompanying

display of the robot’s real-time decision making. In both the pilot study using online video, and

the subsequent experiment with direct observation, the outcome is strongly significant. The

addition of ABOD3 visualisation of the robot’s intelligence does indeed make the machine
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nature of the robot more transparent. The results of the Online Video experiment in Chapter 3

imply that an improved mental model of the robot is associated with an increased perception of a

thinking machine, even though there is no significant change in the level of perceived intelligence.

However, this effect is not seen when the robot is directly observed. The relationship between

the perception of intelligence and thinking is therefore not straightforward. Chapter 4 provides

evidence that a similar significant improvement in robot transparency can also be achieved by

vocalisation of the robot’s real-time decision making. The study in Chapter 4 also indicates

the possibility that participants feel more positive about a directly observed robot when it is

muttering, but with the limited study size these results are not statistically significant, and in

comparison with the much stronger effect of the transparency on accuracy of mental model,

this emotional effect appears to be much weaker. Indeed, there was almost no difference in the

levels of arousal generated by a silent or muttering robot, which in itself is an interesting result.

The study using Mechanical Turk in Chapter 5 reconfirms that the addition of a visual or

vocalised representation of the internal processing and state of the robot significantly improves

transparency, even though the understanding of naive observers may still include wildly in-

accurate overestimation of the robot’s abilities. This is a significant result across a diverse,

international population sample and provides a robust result about humans in general, rather than

one geographic, ethnic or socio-economic group in particular. However, in all our experiments

we were unable to achieve a Mental Model Accuracy (MMA) of more than 59%. This indicates

that even with real-time transparency of a robot’s internal state and processing, naive observers’

models remain inaccurate to some degree. Whether a robot design that achieves an MMA of

59% is acceptable or not will depend on the context and specific application area. It may be that

a limit is reached whereby further real-time transparency measures are ineffective at improving

MMA without further scaffolding, and the remaining gap can only be closed through other

transparency means, such as human explanation or written documentation.

The studies of Chapters 3, 4, and 5 taken together indicate that significant numbers of participants

perceive that they have a good model of the robot, when in reality they do not. This occurs both

with, and without the provision of additional robot transparency. Reports of understanding by

those interacting with robots should therefore be treated with healthy scepticism. A vocalising, or

‘talking’, robot greatly increases the confidence of naive observers to report that they understand

a robot’s behaviour when observed on video. Perhaps we might be more easily deceived by

talking robots than silent ones.

The study in Chapter 5 shows that the zoomorphic form of the R5 robot is perceived as more

intelligent and more likeable. I suggest that the zoomorphic form attracts closer visual attention,

and whilst this results in an improved MMA, it also diverts attention away from transparency

measures, reducing their efficacy to further increase MMA. The trivial embellishment of a robot
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to alter its form has significant effects on our understanding and attitude towards it. We need to

be careful not to trivially embellish a robot to make it more likeable or appear smarter than it

is, at the possible expense of making its true capabilities and purpose less transparent, and it’s

behaviour more difficult to understand.

7.2 Transparency as a Fundamental Design Consideration for AI
Systems

In Chapter 6 I argue that it is possible to justify a moral assertion based on scientific evidence.

I go on to argue the case for transparency, and conclude that transparency should be a
fundamental design consideration for AI systems. Reference to the need for transparency

should be included in standards, regulations and policies that relate to the effective and beneficial

use of robots and AIS.

7.3 Robot Technical Architecture

Although primarily developed as part of this research programme for use within the R5 robot,

the Instinct Planner has obvious applications in teaching, simulation and game AI environments.

The Instinct Robot World provides a GUI based test platform for Instinct, and for use as a

teaching tool to teach the concepts of reactive planning in general and the Instinct Planner in

particular.

I have shown that a second-order Darwinian mind may be constructed from two instances of the

Instinct reactive planner. This architecture, named Reflective Reactive Planning, successfully

controls the behaviour of a virtual robot within a simulated world, according to pre-defined

goals and higher level objectives. The work shows how this architecture may provide both

practical cognitive implementations, and may inform philosophical discussion on the nature and

purpose of consciousness.

7.4 Conclusion

The space in which transparency could be investigated has many dimensions, including robot

purpose and behaviour, physical size and appearance, and the extent and context of robot

interaction, together with various forms of transparency measure. This research has investigated
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a portion of this space with a small, non-humanoid mobile robot using visual and vocalised

real-time transparency measures with naive observers. We have found significant evidence to

support the need for transparency as a fundamental design consideration for AI systems, but

there exists considerable scope for further work. There is also a an urgent need for a broad

programme of multi-disciplinary work to investigate the wider societal impact of robots and

autonomous intelligent systems, leading to the informed creation of standards, regulation and

policy. I hope this research makes a contribution to that process.
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Appendix A

Instinct Planner Command Set

The Instinct Planner includes an online help system. The R5 Robot command HELP PLAN

shows a list of all available commands, as below.

HELP PLAN

PLAN Commands :

A{Add p l a n e l e m e n t } |U{ Update p l a n e l e m e n t } |M{ Conf ig Moni to r } |

R{ R e s e t p l a n } ] [ p a r a m e t e r v a l u e s ]

A − add e l e m e n t s t o t h e e x i s t i n g p l a n

A [D{ Dr ive } | C{ Competence } |A{ Ac t io n } | P{ Ac t io n P a t t e r n } |

E{ Competence Element } | L{ A c t i o n P a t t e r n Element } ]

[ p a r a m e t e r v a l u e s ]

The A D command has 12 p a r a m e t e r s a s below :

A D Runt ime_ElementID Runt ime_Chi ldID P r i o r i t y

u i I n t e r v a l SenseID Compara tor SenseValue

S e n s e H y s t e r e s i s S e n s e F l e x L a t c h H y s t e r e s i s

RampIncrement U r g e n c y M u l t i p l i e r R a m p I n t e r v a l

The A C command has 2 p a r a m e t e r s :

A C Runt ime_ElementID UseORWithinCEGroup

The A A command has 3 p a r a m e t e r s :

A A Runt ime_ElementID Act ionID Ac t ionVa lue

The A P command has j u s t one p a r a m e t e r :

A P Runt ime_ElementID

The A E command has 10 p a r a m e t e r s :

A E Runt ime_ElementID Runt ime_Paren t ID Runt ime_Chi ldID

P r i o r i t y R e t r y L i m i t SenseID Compara tor SenseValue
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S e n s e H y s t e r e s i s S e n s e F l e x L a t c h H y s t e r e s i s

The A L command has 4 p a r a m e t e r s :

A L Runt ime_ElementID Runt ime_Paren t ID Runt ime_Chi ldID

Order

D − d i s p l a y a g i v e n node , o r t h e h i g h e s t e l e m e n t ID

D [N{ d i s p l a y p l a n s e t t i n g s f o r a node } |

C{ d i s p l a y c o u n t e r s f o r a node } |H{ H i g h e s t node ID } ]

The D N and D C commands have 1 p a r a m e t e r a s below :

D {N | C} Runt ime_ElementID

The D H command t a k e s no p a r a m e t e r s .

U − command n o t y e t s u p p o r t e d . Wi l l a l l o w u p d a t e o f

i n d i v i d u a l nodes

M − Update t h e m o n i t o r f l a g s f o r a s p e c i f i c node ,

o r t h e g l o b a l f l a g s

M [N{Node ID } |G{ Gl ob a l f l a g s } ]

The M N command has 7 p a r a m e t e r s

M N Runt ime_ElementID Mon i to rExecu t ed M o n i t o r S u c c e s s

Mon i to rPend ing M o n i t o r F a i l M o n i t o r E r r o r Mon i to rSense

e . g . M N 27 1 1 0 1 1 1

The M G command has 6 p a r a m e t e r s

M G Moni to rExecu t e d M o n i t o r S u c c e s s Moni to rPend ing

M o n i t o r F a i l M o n i t o r E r r o r Mon i to rSense

e . g . M N 0 1 0 0 0 1

R − C l e a r t h e p l a n and i n i t i a l i s e a new one

R [C{ c l e a r p l a n } | I { c l e a r p l a n and i n i t i a l i s e new one } ]

The R C command t a k e s no p a r a m e t e r s

The R I command t a k e s 6 p a r a m e t e r s

R I COUNT_ACTIONPATTERN COUNT_ACTIONPATTERNELEMENT

COUNT_COMPETENCE COUNT_COMPETENCEELEMENT

COUNT_DRIVE COUNT_ACTION

e . g . R I 0 0 1 10 2 20

S − r e t u r n t h e s i z e o f t h e p l a n i n t o a s t r i n g b u f f e r

S [C{ r e t u r n node c o u n t s } | S{ r e t u r n t o t a l p l a n s i z e } ]

The S C and S S commands t a k e no p a r a m e t e r s

I − S e t / r e t u r n t h e ID of t h e p l a n

I [ S{ s e t t h e p l a n ID } | R{ r e t u r n t h e p l a n ID } ]

The I S command t a k e s 1 p a r a m e t e r
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I S [ PlanID ]

The I R command t a k e s no p a r a m e t e r s
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Appendix B

R5 Robot Command Set

The R5 Robot includes an online command line help system. Typing HELP shows a list of all

available commands, as below.

HELP

PLAN STOP START RESET DUMP TIME SETTIME REPORT RATE CAL CON PELEM

RSENSE RACTION HSTOP HSTART SPLAN RPLAN SCONF RCONF SWIFI CONF

HELP VER SHOWIFI SHOCONF SHOREPORT SHORATE SHONAMES SPEAKRULE

SHORULES SRULES RRULES CNAMES

Typing HELP [command] displays details for that command, for example:

HELP SPLAN

SPLAN − s ave r o b o t p l a n i n EEPROM

HELP RPLAN

RPLAN − r e a d r o b o t p l a n from EEPROM
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Appendix C

Instinct Plan for the R5 Robot

This appendix shows the Instinct Plan of the R5 and Buddy Robots used in all our experiments,

written in the Instinct Visual Design Language (iVDL) within the Dia drawing tool. The six

plan element types are identified by colour:

• Drive — Orange

• Competence — Pink

• Action Pattern — Yellow

• Action — Green

• Competence Element - Blue

• Action Pattern Element Element - Blue

In addition, the plan includes each of the robot senses and primitive behaviours.

• Sense — Purple

• Behaviour — Red

This plan is available for download1, and requires the Dia drawing tool (Macke, 2014).

1Design details and software for the R5 Robot: http://www.robwortham.com/r5-robot/
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<<RobotAction>>

SetSpeed
+ActionID = 1

<<RobotAction>>
MoveBy

+ActionID = 2

<<RobotAction>>
Turn

+ActionID = 3

<<RobotAction>>

Stop
+ActionID = 4

<<RobotAction>>
Sleep

+ActionID = 5

<<RobotAction>>

Wake
+ActionID = 6

<<RobotAction>>

HMoveHead
+ActionID = 7

<<RobotAction>>

VMoveHead
+ActionID = 8

<<RobotAction>>

Fail
+ActionID = 9

<<Drive>>

Explore
+Priority = 100
+Sense = Sleeping
+Comparator = EQ
+SenseValue = 0
+SenseHysteresis = 0
+SenseFlexLatchHysteresis = 0

<<Competence>>
ForwardAvoidingObstacle
+UseORWithinCEGroup = 1

<<CompetenceElement>>

AheadFree
+Priority = 4
+RetryLimit = 0
+Sense = MinRangeAhead
+Comparator = GT
+SenseValue = 1000
+SenseHysteresis = 10
+SenseFlexLatchHysteresis = 0

<<CompetenceElement>>
AheadBlocked

+Priority = 2
+RetryLimit = 0
+Sense = MinRangeAhead
+Comparator = GT
+SenseValue = 0
+SenseHysteresis = 10
+SenseFlexLatchHysteresis = 0

<<ActionPattern>>

ReverseTurnAvoid

<<ActionPatternElement>>

RTA1
+Order = 1

<<ActionPatternElement>>

RTA2
+Order = 2

<<ActionPatternElement>>

RTA4
+Order = 4

<<ActionPatternElement>>

RTA6
+Order = 6

<<Action>>
MoveBack

+Action = MoveBy
+ActionValue = -100

<<Action>>

Turn45Degrees
+Action = TurnMostOpenDir
+ActionValue = 45

<<Action>>

AheadSlow
+Action = SetSpeed
+ActionValue = 35

<<Action>>
Stop

+Action = Stop
+ActionValue = 0

<<Action>>
AheadMedium

+Action = SetSpeed
+ActionValue = 55

<<Action>>
AheadFull

+Action = SetSpeed
+ActionValue = 100

<<Competence>>
ForwardSafely

+UseORWithinCEGroup = 0

<<CompetenceElement>>
FS1

+Priority = 1
+Sense = MinRangeAhead
+Comparator = LT
+SenseValue = 400
+SenseHysteresis = 10
+SenseFlexLatchHysteresis = 0

<<CompetenceElement>>

FS2
+Priority = 2
+Sense = MinRangeAhead
+Comparator = GT
+SenseValue = 400
+SenseHysteresis = 10
+SenseFlexLatchHysteresis = 0

<<CompetenceElement>>
FS3

+Priority = 3
+Sense = MinRangeAhead
+Comparator = GT
+SenseValue = 1250
+SenseHysteresis = 10
+SenseFlexLatchHysteresis = 0

<<CompetenceElement>>

FS4
+Priority = 4
+Sense = MinRangeAhead
+Comparator = GT
+SenseValue = 2500
+SenseHysteresis = 15
+SenseFlexLatchHysteresis = 0

Description of Robot Behaviour:
1. Roam around, avoiding objects.
2. When I encounter an object, turn left or right depending on which way seems to be clearer.
3. Whilst roaming, look around for a human
4. If a human might be detected, stop, turn towards it and wait
5. check if its a human. If it is, signal to it (somehow)
6. Turn away and start roaming again

7. Regularly sleep when not out in the open (i.e. when near something). While sleeping, ignore what's going on around me.
8. If motors overload then stop. I need manual intervention!

<<Drive>>

ProtectMotors
+Priority = 255
+Sense = MotorCurrent
+Comparator = GT
+SenseValue = 2500
+SenseHysteresis = 2501
+SenseFlexLatchHysteresis = 0

<<Action>>

Sleep15Seconds
+Action = Sleep
+ActionValue = 15

<<ActionPattern>>
SignalCrashAndSleep

<<ActionPatternElement>>

SCAS1
+Order = 1

<<ActionPatternElement>>

SCAS2
+Order = 2

<<RobotAction>>

HScan
+ActionID = 10

<<RobotAction>>

VScan
+ActionID = 11

<<RobotAction>>

Wait
+ActionID = 12

<<RobotAction>>

TurnMostOpenDir
+ActionID = 14

<<ActionPatternElement>>

SCAS6
+Order = 5

<<Action>>

StopHorizontalScan
+Action = HScan
+ActionValue = 0

<<ActionPatternElement>>

SCAS3
+Order = 2

<<Action>>

StopVerticalScan
+Action = VScan
+ActionValue = 0

<<ActionPatternElement>>

SCAS4
+Order = 3

<<Action>>

LookUp
+Action = VMoveHead
+ActionValue = 90

<<Drive>>

Sleep
+Priority = 5
+Sense = EmergAvoidDist
+Comparator = LT
+SenseValue = 300
+SenseHysteresis = 5000
+SenseFlexLatchHysteresis = 5000
+RampIncrement = 2
+UrgencyMultiplier = 0
+RampInterval = 1

<<ActionPattern>>
StopAndSleep

<<ActionPatternElement>>

SAS1
+Order = 1

<<ActionPatternElement>>
SAS2

+Order = 2

<<ActionPatternElement>>

SAS8
+Order = 7

<<ActionPatternElement>>

SAS3
+Order = 2

<<Action>>
Sleep10Seconds

+Action = Sleep
+ActionValue = 10

<<Drive>>

MovingSoLook
+Priority = 245
+Sense = MovingHScanInterval
+Comparator = GT
+SenseValue = 10000
+SenseHysteresis = 0
+SenseFlexLatchHysteresis = 0 <<Action>>

FastHorizontalScan
+Action = HScan
+ActionValue = 2000

<<RobotSense>>
IR_FrontRight
+SenseID = 1

<<RobotSense>>

IR_RearLeft
+SenseID = 3

<<RobotSense>>

Sleeping
+SenseID = 8

<<RobotSense>>
Random

+SenseID = 7

<<RobotSense>>

Fifty
+SenseID = 9

<<RobotSense>>

RangeFinder
+SenseID = 10

<<RobotSense>>

FrontRange
+SenseID = 11

<<RobotSense>>
IR_FrontLeft

+SenseID = 2

<<RobotSense>>
IR_RearRight

+SenseID = 4

<<RobotSense>>

IR_Front
+SenseID = 5

<<RobotSense>>
IR_Rear

+SenseID = 6

<<RobotSense>>

PIR
+SenseID = 12

<<RobotSense>>
IR_Left

+SenseID = 13

<<RobotSense>>

IR_Right
+SenseID = 14

<<RobotSense>>

IR_NearestCorner
+SenseID = 15

<<RobotSense>>

IR_NearestEdge
+SenseID = 16

<<RobotSense>>

MotorCurrent
+SenseID = 17

<<RobotSense>>

MovingHScanInterval
+SenseID = 18

<<RobotSense>>

StoppedVScanInterval
+SenseID = 19

<<RobotSense>>

MinRangeAhead
+SenseID = 20

<<RobotSense>>

HScanReady
+SenseID = 21

<<Action>>

WaitForScanning
+Action = WaitHScan
+ActionValue = 0

<<CompetenceElement>>
AheadPossibleObstacle

+Priority = 3
+RetryLimit = 0
+Sense = MinRangeAhead
+Comparator = GT
+SenseValue = 400
+SenseHysteresis = 10
+SenseFlexLatchHysteresis = 0

<<Action>>

TurnToAvoid
+Action = TurnToMostOpen
+ActionValue = 1

<<CompetenceElement>>

NoScanning
+Priority = 2
+RetryLimit = 0
+Sense = HScanReady
+Comparator = EQ
+SenseValue = 0
+SenseHysteresis = 0
+SenseFlexLatchHysteresis = 0

<<RobotAction>>

TurnToMostOpen
+ActionID = 13

<<ActionPattern>>

TurnAvoid

<<ActionPatternElement>>
TA3

+Order = 3

<<ActionPatternElement>>

TA5
+Order = 5

<<ActionPatternElement>>

RTA5
+Order = 5

<<ActionPattern>>

AllClear

<<ActionPatternElement>>

AC1
+Order = 1

<<ActionPatternElement>>

AC2
+Order = 2

<<Action>>

SlowHScan
+Action = HScan
+ActionValue = 3000

<<ActionPatternElement>>

RTA3
+Order = 3

<<ActionPattern>>

ObjectsAround

<<ActionPatternElement>>

OA1
+Order = 1

<<ActionPatternElement>>

OA2
+Order = 2

<<ActionPatternElement>>

TA2
+Order = 2

<<ActionPatternElement>>

TA4
+Order = 4

<<ActionPatternElement>>

SAS11
+Order = 10

<<ActionPatternElement>>
SAS12

+Order = 11

<<ActionPatternElement>>

SAS6
+Order = 5

<<ActionPatternElement>>

SAS4
+Order = 3

<<Action>>

TuckHead
+Action = VMoveHead
+ActionValue = 60

<<Action>>

HeadStraight
+Action = HMoveHead
+ActionValue = 75

<<ActionPatternElement>>

SAS5
+Order = 4

<<Action>>

Wait1Second
+Action = Wait
+ActionValue = 1000

<<ActionPatternElement>>

SAS7
+Order = 6

<<ActionPatternElement>>
SAS9

+Order = 8

<<Action>>

UnfurlHead
+Action = VMoveHead
+ActionValue = 180

<<ActionPatternElement>>

SAS10
+Order = 9

<<RobotAction>>

WaitHScan
+ActionID = 15

<<RobotAction>>

WaitVScan
+ActionID = 16

<<Drive>>
EmergencyAvoidObstacle

+Priority = 150
+Sense = EmergAvoidDist
+Comparator = LT
+SenseValue = 220
+SenseHysteresis = 25
+SenseFlexLatchHysteresis = 0

<<ActionPattern>>

ObjectsNear

<<ActionPatternElement>>

ON1
+Order = 1

<<ActionPatternElement>>

ON2
+Order = 2

<<Drive>>

DetectHuman
+Priority = 230
+Sense = HumanAhead
+Comparator = GT
+SenseValue = 0
+SenseHysteresis = 1
+SenseFlexLatchHysteresis = 0

<<ActionPattern>>

ScanForHuman

<<ActionPatternElement>>

SFH1
+Order = 1

<<ActionPatternElement>>

SFH3
+Order = 3

<<ActionPatternElement>>

SFH4
+Order = 4

<<Action>>

LookUpForHuman
+Action = VMoveHead
+ActionValue = 135

<<Action>>

ScanHuman
+Action = Scan
+ActionValue = 500

<<Action>>
WaitForScan

+Action = WaitScan
+ActionValue = 0

<<ActionPatternElement>>

SFH6a
+Order = 6

<<ActionPatternElement>>

SFH7
+Order = 7

<<Action>>

WaitForHumanDetector
+Action = ConfirmHuman
+ActionValue = 9000

<<ActionPatternElement>>
SFH8

+Order = 8

<<Competence>>

CheckForHuman
+UseORWithinCEGroup = 1

<<CompetenceElement>>

HumanPresent
+Priority = 1
+RetryLimit = 0
+Sense = ConfHuman
+Comparator = EQ
+SenseValue = 2
+SenseHysteresis = 0
+SenseFlexLatchHysteresis = 0

<<CompetenceElement>>

NoHumanPresent
+Priority = 1
+RetryLimit = 0
+Sense = ConfHuman
+Comparator = NE
+SenseValue = 2
+SenseHysteresis = 0
+SenseFlexLatchHysteresis = 0

<<ActionPattern>>

FoundAHuman

<<Action>>

ResetHumanDetector
+Action = ResetHD
+ActionValue = 0

<<ActionPatternElement>>

FAH1
+Order = 1

<<ActionPatternElement>>

FAH2
+Order = 2

<<ActionPatternElement>>
FAH3

+Order = 3

<<ActionPatternElement>>

FAH6
+Order = 6

<<ActionPatternElement>>

FAH4
+Order = 4

<<ActionPatternElement>>
FAH5

+Order = 5

<<Action>>

TurnRight10
+Action = Turn
+ActionValue = 10

<<ActionPatternElement>>
SFH5a

+Order = 5

<<Action>>

TurnLeft20
+Action = Turn
+ActionValue = -20

<<Action>>
FlashSuccess

+Action = FlashColour
+ActionValue = 6002

<<RobotAction>>

ResetHD
+ActionID = 17

<<RobotSense>>

HumanAhead
+SenseID = 23

<<RobotAction>>
WaitScan

+ActionID = 18

<<RobotSense>>
VScanReady

+SenseID = 22

<<RobotSense>>

ScanReady
+SenseID = 24

<<RobotAction>>

Scan
+ActionID = 19

<<ActionPatternElement>>
SFH5b

+Order = 5

<<RobotAction>>
ConfirmHuman

+ActionID = 20

<<RobotSense>>
ConfHuman

+SenseID = 25

<<ActionPatternElement>>

TA1
+Order = 1

<<Competence>>
TurnIfNecessary

+UseORWithinCEGroup = 1

<<CompetenceElement>>
TIN1

+Priority = 1
+RetryLimit = 0
+Sense = MinRangeAhead
+Comparator = GT
+SenseValue = 600
+SenseHysteresis = 10
+SenseFlexLatchHysteresis = 0

<<CompetenceElement>>
TIN2

+Priority = 1
+RetryLimit = 0
+Sense = MinRangeAhead
+Comparator = LT
+SenseValue = 600
+SenseHysteresis = 10
+SenseFlexLatchHysteresis = 0

<<ActionPatternElement>>

SFH6b
+Order = 6

<<Action>>
LookForwardForHuman
+Action = HMoveHead
+ActionValue = 75

<<Action>>

MoveAway
+Action = MoveBy
+ActionValue = -100

<<RobotAction>>

FlashColour
+ActionID = 21

<<ActionPatternElement>>

FAH7
+Order = 7

<<Action>>
TurnRight180

+Action = Turn
+ActionValue = 180

<<ActionPatternElement>>

SCAS5
+Order = 4

<<Action>>
FlashWarning

+Action = FlashColour
+ActionValue = 8004

<<RobotSense>>

Moving
+SenseID = 26

<<RobotSense>>

EmergAvoidDist
+SenseID = 27

<<ActionPattern>>

NoHuman

<<ActionPatternElement>>

NH1
+Order = 1

<<ActionPatternElement>>

NH2
+Order = 2

<<Action>>

FlashFail
+Action = FlashColour
+ActionValue = 3004

Figure C-1: Instinct Plan for the R5 Robot.
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Appendix D

ABOD3 Displays

This appendix shows an example screen-shot from the ABOD3 real-time graphical debugger,

Figure D-1. It shows a portion of the reactive plan of the R5 robot described in Section 3.3.2.

The highlighted boxes show the current and recent activation of the plan elements within the

Instinct reactive planner. A plan element is highlighted each time it is executed, with the

highlighting decaying over a few seconds. This decay time configurable within ABOD3.

Figure D-2 shows a frame from a video showing ABOD3 displaying plan activation synchronised

with an embedded video of the R5 robot in operation. See Section 3.4.1.
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Appendix E

Google Forms Questionnaire

The following nine pages contain a printed representation of the Google Form used to capture

participant responses in Section 5.4.4.

Note that mandatory fields are shown with red asterisks (*).
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